I need to implement a custom fields in my database so every user can add any fields he wants to his form/entities.
The user should be able to filter or/and sort his data by any custom field.
I want to work with MySQL because the rest of my data is very suitable to SQL. So, unless you have a great idea, SQL will be preferred over NoSQL.
We thought about few solutions:
JSON field - Great for dynamic schema. Can be filtered and sorted. The problem is that it is slower then regular columns.
Dynamic indexes can solve that but is it too risky to add indexes dynamically.
Key-value table - A simple solution but a really slow one. You can't index it properly and the queries are awful.
Static placeholder columns - Create N columns and hold a map of each field to its placeholder. - A good solution in terms of performance but it makes the DB not readable and it has limited columns.
Any thoughts how to improve any of the solutions or any idea for a new solution?
As many of the commenters have remarked, there is no easy answer to this question. Depending on which trade-offs you're willing to make, I think the JSON solution is neatest - it's "native" to MySQL, so easiest to explain and understand.
However, given that you write that the columns are specified only at set up time, by technically proficient people, you could, of course, have the set-up process include an "alter table" statement to add new columns. Your database access code and all the associated view logic would then need to be configurable too; it's definitely non-trivial.
However...it's a proven solution. Magento and Drupal, for instance, have admin screens for adding attributes to the business entities, which in turn adds columns to the relational database.
Related
I have 40+ columns in my table and i have to add few more fields like, current city, hometown, school, work, uni, collage..
These user data wil be pulled for many matching users who are mutual friends (joining friend table with other user friend to see mutual friends) and who are not blocked and also who is not already friend with the user.
The above request is little complex, so i thought it would be good idea to put extra data in same user table to fast access, rather then adding more joins to the table, it will slow the query more down. but i wanted to get your suggestion on this
my friend told me to add the extra fields, which wont be searched on one field as serialized data.
ERD Diagram:
My current table: http://i.stack.imgur.com/KMwxb.png
If i join into more tables: http://i.stack.imgur.com/xhAxE.png
Some Suggestions
nothing wrong with this table and columns
follow this approach MySQL: Optimize table with lots of columns - which serialize extra fields into one field, which are not searchable's
create another table and put most of the data there. (this gets harder on joins, if i already have 3 or more tables to join to pull the records for users (ex. friends, user, check mutual friends)
As usual - it depends.
Firstly, there is a maximum number of columns MySQL can support, and you don't really want to get there.
Secondly, there is a performance impact when inserting or updating if you have lots of columns with an index (though I'm not sure if this matters on modern hardware).
Thirdly, large tables are often a dumping ground for all data that seems related to the core entity; this rapidly makes the design unclear. For instance, the design you present shows 3 different "status" type fields (status, is_admin, and fb_account_verified) - I suspect there's some business logic that should link those together (an admin must be a verified user, for instance), but your design doesn't support that.
This may or may not be a problem - it's more a conceptual, architecture/design question than a performance/will it work thing. However, in such cases, you may consider creating tables to reflect the related information about the account, even if it doesn't have a x-to-many relationship. So, you might create "user_profile", "user_credentials", "user_fb", "user_activity", all linked by user_id.
This makes it neater, and if you have to add more facebook-related fields, they won't dangle at the end of the table. It won't make your database faster or more scalable, though. The cost of the joins is likely to be negligible.
Whatever you do, option 2 - serializing "rarely used fields" into a single text field - is a terrible idea. You can't validate the data (so dates could be invalid, numbers might be text, not-nulls might be missing), and any use in a "where" clause becomes very slow.
A popular alternative is "Entity/Attribute/Value" or "Key/Value" stores. This solution has some benefits - you can store your data in a relational database even if your schema changes or is unknown at design time. However, they also have drawbacks: it's hard to validate the data at the database level (data type and nullability), it's hard to make meaningful links to other tables using foreign key relationships, and querying the data can become very complicated - imagine finding all records where the status is 1 and the facebook_id is null and the registration date is greater than yesterday.
Given that you appear to know the schema of your data, I'd say "key/value" is not a good choice.
I would advice to run some tests. Try it both ways and benchmark it. Nobody will be able to give you a definitive answer because you have not shared your hardware configuration, sample data, sample queries, how you plan on using the data etc. Here is some information that you may want to consider.
Use The Database as it was intended
A relational database is designed specifically to handle data. Use it as such. When written correctly, joining data in a well written schema will perform well. You can use EXPLAIN to optimize queries. You can log SLOW queries and improve their performance. Databases have been around for years, if putting everything into a single table improved performance, don't you think that would be all the buzz on the internet and everyone would be doing it?
Engine Types
How will inserts be affected as the row count grows? Are you using MyISAM or InnoDB? You will most likely want to use InnoDB so you get row level locking and not table. Make sure you are using the correct Engine type for your tables. Get the information you need to understand the pros and cons of both. The wrong engine type can kill performance.
Enhancing Performance using Partitions
Find ways to enhance performance. For example, as your datasets grow you could partition the data. Data partitioning will improve the performance of a large dataset by keeping slices of the data in separate partions allowing you to run queries on parts of large datasets instead of all of the information.
Use correct column types
Consider using UUID Primary Keys for portability and future growth. If you use proper column types, it will improve performance of your data.
Do not serialize data
Using serialized data is the worse way to go. When you use serialized fields, you are basically using the database as a file management system. It will save and retrieve the "file", but then your code will be responsible for unserializing, searching, sorting, etc. I just spent a year trying to unravel a mess like that. It's not what a database was intended to be used for. Anyone advising you to do that is not only giving you bad advice, they do not know what they are doing. There are very few circumstances where you would use serialized data in a database.
Conclusion
In the end, you have to make the final decision. Just make sure you are well informed and educated on the pros and cons of how you store data. The last piece of advice I would give is to find out what heavy users of mysql are doing. Do you think they store data in a single table? Or do they build a relational model and use it the way it was designed to be used?
When you say "I am going to put everything into a single table", you are saying that you know more about performance and can make better choices for optimization in your code than the team of developers that constantly work on MySQL to make it what it is today. Consider weighing your knowledge against the cumulative knowledge of the MySQL team and the DBAs, companies, and members of the database community who use it every day.
At a certain point you should look at the "short row model", also know as entity-key-value stores,as well as the traditional "long row model".
If you look at the schema used by WordPress you will see that there is a table wp_posts with 23 columns and a related table wp_post_meta with 4 columns (meta_id, post_id, meta_key, meta_value). The meta table is a "short row model" table that allows WordPress to have an infinite collection of attributes for a post.
Neither the "long row model" or the "short row model" is the best model, often the best choice is a combination of the two. As #nevillek pointed out searching and validating "short row" is not easy, fetching data can involve pivoting which is annoyingly difficult in MySql and Oracle.
The "long row model" is easier to validate, relate and fetch, but it can be very inflexible and inefficient when the data is sparse. Some rows may have only a few of the values non-null. Also you can't add new columns without modifying the schema, which could force a system outage, depending on your architecture.
I recently worked on a financial services system that had over 700 possible facts for each instrument, most had less than 20 facts. This could have been built by setting up dozens of tables, each for a particular asset class, or as a table with 700 columns, but we chose to use a combination of a table with about 20 columns containing the most popular facts and a 4 column table which contained the other facts. This design was efficient but was difficult ot access, so we built a few table functions in PL/SQL to assist with this.
I have a general comment for you,
Think about it: If you put anything more than 10-12 columns in a table even if it makes sense to put them in a table, I guess you are going to pay the price in the short term, long term and medium term.
Your 3 tables approach seems to be better than the 1 table approach, but consider making those into 5-6 tables rather than 3 tables because you still can.
Move currently, currently_position, currently_link from user-table and work from user-profile into a new table with your primary key called USERWORKPROFILE.
Move locale Information from user-profile to a newer USERPROFILELOCALE information because it is generic in nature.
And yes, all your generic attributes in all the tables should be int and not varchar.
For instance, City needs to move out to a new table called LIST_OF_CITIES with cityid.
And your attribute city should change from varchar to int and point to cityid in LIST_OF_CITIES.
Do not worry about performance issues; the more tables you have, better the performance, because you are actually handing out the performance to the database provider instead of taking it all in your own hands.
I need to create dynamic tables in the database on the fly. For example, in the database I will have tables named:
Table
Column
DataType
TextData
NumberData
DateTimedata
BitData
Here I can add a table in the table named table, then I can add all the columns to that table in the columns table and associate a datatype to each column.
Basically I want to create tables without actually creating a table in the database. Is this even possible? If so, can you direct me to the right place so I can research? Also, I would prefer sql server or any free database software.
Thanks
What you are describing is an entity-attribute-value model (EAV). It is a very poor way to design a data model.
Although the data model is quite flexible, querying such a data model is quite complicated. You frequently end up having to self-join a table n times if you want to select or filter on n different attributes. That gets slow rather slow and becomes rather hard to optimize relatively quickly.
Plus, you generally end up building a lot of functionality that the database or your ORM would provide.
I'm not sure what the real problem you're having is, but the solution you proposed is the "database within a database" antipattern which makes so many people cringe.
Depending on how you're querying your data, if you were to structure things like you're planning, you'd either need a bunch of piece-wise queries which are joined in the middleware (slow) or one monster monolithic query (either slow or creates massive index bloat), if one is even possible.
If you must create tables on the fly, learn the CREATE TABLE ALTER TABLE and DROP TABLE DDL statements for the particular database engine you're using. Better yet, find an ORM that will do this for you. If your real problem is that you need to store unstructured data, check out MongoDB, Redis, or some of the other NoSQL variants.
My final advice is to write up the actual problem you're trying to solve as a separate question, and you'll probably learn a lot more.
Doing this with documents might be easier. Perhaps you should look at a noSQL solution such as mongoDB.
Or you can still create the Temporary tables but use a cronjob and create the Temporary tables every %% hours and rename it to the correct name after the query's are done. so your site is stil in the air
What you are trying to archive is not not bad but you must use it in the correct logic way.
*sorry for my bad english
I did something like this in LedgerSMB. While we use EAV modelling for a few things (where the flexibility is needed and the sort of querying we are doing is straight-forward, for example menu nodes use this in part), in general, you want to stay away from this as much as possible.
A better approach is to do all of what you are doing except for the data columns. Then you can (shock of shocks) just create the tables. This gives you a catalog of what you have added so your app knows this (and you can diff from the system catalogs if you ever have to check!) but at the same time you get actual relational modelling.
What we did in LedgerSMB was to have stored procedures that would accept a table name exists ('extends_' || name supplied). If so would add a column with the datatype required and write this to the application catalogs. This gives us relational modelling of extended attributes. At load time, the application loads the application catalogs and writes queries as appropriate at appropriate points to load/save the data. It works pretty well, actually.
I'm using a standard SQL database and I'm trying to figure out whether or not to flatten a table or make it more "object-oriented". To me, smaller tables are easier to read but it would require joining tables and having one-to-one relationships. Is this generally a good way of doing things or is it frowned on in the SQL world?
I have a table which has the following attributes:
MYTABLE
- ID
- NAME
- LABEL
- CREATED_TS
- MODIFIED_TS
- CREATED_USER
- MODIFIED_USER
To me, the created/modified fields would be their own object. There are actually a few more fields as well so it's not really just this small. I would think that creating another table called "MYTABLE_MODINFO" or something like that which would have the CREATED and MODIFIED fields and they would be joined when data from them was needed. These tables aren't high access tables, they wouldn't have tons of queries per minute or even hundreds of rows in them, so I don't think efficiency would be much of an issue.
So mainly what I'm wondering is would this be a generally accepted design or should you generally keep your table structures flat?
You should create audit information in the same table. The reason is that this data is part of the row and is a one to one relationship, so there is no point in branching it apart.
If you want to store the audit info (audit tracking/history), then you can create another table, however in most cases I have seen this built by "duplicating" data and creating a surrogate key and mappings back to the original row. The reason I list duplicating in quotes is because auditing inherently requires duplication of the old data...if it is linked and changeable after being written, then it is not really an audit.
Just my two cents. If it does not make sense, then I can provide some examples. But, the gist is that each row will only ever have one current piece of modification information, so why break it out if it will never have more than one?
avoid a database 'one to one', you'll lose performance, scalability, independence. can you imagine what happen if you want to store 2 pictures per ID? will you create another field or will you repeat the row??... it's easier to create relationship to have more freedom when you want to upgrade, please review this tutorials.
http://www.youtube.com/watch?v=Onzm-PxSjtE
http://folkworm.ceri.memphis.edu/ew/SCHEMA_DOC/comparison/erd.htm
http://www.visual-paradigm.com/product/vpuml/provides/dbmodeling.jsp
Beside that you should normalize the DB to be sure that everything is in the best shape possible. Remember that the most important is to take what you need and adapt it.
http://databases.about.com/od/specificproducts/a/normalization.htm
http://www.youtube.com/watch?v=xzeuBwHkKxw
RDBMS design aren't the same with object-oriented approach in my view. the example you mentioned aren't different objects domain but data inheritance of your record. Since there would not be any overhead of tons of queries/execution of the table so you should keep them in the same table for auditing purpose and also easier to work with at normalize data.
Most of my experience has been with smaller projects and anytime I needed to create a look-up table I actually made a new table, even if it just contained a few entities.
I'm starting on a slightly larger project now, and in planning the database I can foresee at least several dozens of look-up tables. Furthermore, I'm looking at how I can avoid hard-coding into the database schema as much as possible, such that new types of look-ups might in the future be added through the application rather than the database schema.
For example, say I have a product table with 25+ columns describing attributes of each product. In my application, many of the attributes will be modified using drop-downs or check boxes. In order to populate these fields I would use look-up tables.
I'm wondering if it's commonplace or good practice to actually create a new table for each look-up, or if there is a better way, such as creating one table with an additional column to distinguish what attribute the look-up is referring to. What is the best way to handle this?
There's no universal "best way" to do this. Several dedicated tables - ok. One larger table with discriminator field is also fine.
It seems that you'll have to go with the second option, because of your requirement ("I want to be able to add new lookups without altering DB schema").
Just index that discriminator column and you're good to go (assuming that your values are all of the same type (strings, for example)).
Another question.
Is it better to vertically partition wide table (in my instance I am thinking about splitting login details from address, personal etc. details of the user) on a design stage or better leave it be and partition it after having some data and doing profiling?
Answer seems to be obvious but I am concerned that row splitting a table sometime down the line will mean additional work to rewrite the user model + it seems reasonable to split often accessed login details from more static personal details.
Anyone has some experience backed advice on how to proceed :)? Thanks in advance.
Premature optimization is...
Splitting columns off to a different table has drawbacks:
Some operations that required a single query now require two queries or a join
It's not trivial to enforce that every row in each table needs to have a corresponding row in the other. Thus, you might face integrity problems
On the other hand, it's dubious at best that doing it will improve performance. Unless you can prove it beforehand (and creating a 10 million records table with random data and running some queries is trivial), I wouldn't do it. Doug Kress' suggestions of encapsulation and avoiding SELECT * are the right way.
The only reason to do it is if your single table design is not normalized and normalization implies breaking up the table.
I believe it would be better to keep it as a single table, but encapsulate your access to the data as much as possible, so that it would be easy to refactor later.
When you do access the data, be sure to only gather the information you need in the query (avoid 'SELECT *').
Having said that, be sure that the data saved with the table is normalized appropriately. You may find that you want to store multiple addresses for a user, for instance - in which case you should put it in a separate table.