mysql table with 40+ columns - mysql

I have 40+ columns in my table and i have to add few more fields like, current city, hometown, school, work, uni, collage..
These user data wil be pulled for many matching users who are mutual friends (joining friend table with other user friend to see mutual friends) and who are not blocked and also who is not already friend with the user.
The above request is little complex, so i thought it would be good idea to put extra data in same user table to fast access, rather then adding more joins to the table, it will slow the query more down. but i wanted to get your suggestion on this
my friend told me to add the extra fields, which wont be searched on one field as serialized data.
ERD Diagram:
My current table: http://i.stack.imgur.com/KMwxb.png
If i join into more tables: http://i.stack.imgur.com/xhAxE.png
Some Suggestions
nothing wrong with this table and columns
follow this approach MySQL: Optimize table with lots of columns - which serialize extra fields into one field, which are not searchable's
create another table and put most of the data there. (this gets harder on joins, if i already have 3 or more tables to join to pull the records for users (ex. friends, user, check mutual friends)

As usual - it depends.
Firstly, there is a maximum number of columns MySQL can support, and you don't really want to get there.
Secondly, there is a performance impact when inserting or updating if you have lots of columns with an index (though I'm not sure if this matters on modern hardware).
Thirdly, large tables are often a dumping ground for all data that seems related to the core entity; this rapidly makes the design unclear. For instance, the design you present shows 3 different "status" type fields (status, is_admin, and fb_account_verified) - I suspect there's some business logic that should link those together (an admin must be a verified user, for instance), but your design doesn't support that.
This may or may not be a problem - it's more a conceptual, architecture/design question than a performance/will it work thing. However, in such cases, you may consider creating tables to reflect the related information about the account, even if it doesn't have a x-to-many relationship. So, you might create "user_profile", "user_credentials", "user_fb", "user_activity", all linked by user_id.
This makes it neater, and if you have to add more facebook-related fields, they won't dangle at the end of the table. It won't make your database faster or more scalable, though. The cost of the joins is likely to be negligible.
Whatever you do, option 2 - serializing "rarely used fields" into a single text field - is a terrible idea. You can't validate the data (so dates could be invalid, numbers might be text, not-nulls might be missing), and any use in a "where" clause becomes very slow.
A popular alternative is "Entity/Attribute/Value" or "Key/Value" stores. This solution has some benefits - you can store your data in a relational database even if your schema changes or is unknown at design time. However, they also have drawbacks: it's hard to validate the data at the database level (data type and nullability), it's hard to make meaningful links to other tables using foreign key relationships, and querying the data can become very complicated - imagine finding all records where the status is 1 and the facebook_id is null and the registration date is greater than yesterday.
Given that you appear to know the schema of your data, I'd say "key/value" is not a good choice.

I would advice to run some tests. Try it both ways and benchmark it. Nobody will be able to give you a definitive answer because you have not shared your hardware configuration, sample data, sample queries, how you plan on using the data etc. Here is some information that you may want to consider.
Use The Database as it was intended
A relational database is designed specifically to handle data. Use it as such. When written correctly, joining data in a well written schema will perform well. You can use EXPLAIN to optimize queries. You can log SLOW queries and improve their performance. Databases have been around for years, if putting everything into a single table improved performance, don't you think that would be all the buzz on the internet and everyone would be doing it?
Engine Types
How will inserts be affected as the row count grows? Are you using MyISAM or InnoDB? You will most likely want to use InnoDB so you get row level locking and not table. Make sure you are using the correct Engine type for your tables. Get the information you need to understand the pros and cons of both. The wrong engine type can kill performance.
Enhancing Performance using Partitions
Find ways to enhance performance. For example, as your datasets grow you could partition the data. Data partitioning will improve the performance of a large dataset by keeping slices of the data in separate partions allowing you to run queries on parts of large datasets instead of all of the information.
Use correct column types
Consider using UUID Primary Keys for portability and future growth. If you use proper column types, it will improve performance of your data.
Do not serialize data
Using serialized data is the worse way to go. When you use serialized fields, you are basically using the database as a file management system. It will save and retrieve the "file", but then your code will be responsible for unserializing, searching, sorting, etc. I just spent a year trying to unravel a mess like that. It's not what a database was intended to be used for. Anyone advising you to do that is not only giving you bad advice, they do not know what they are doing. There are very few circumstances where you would use serialized data in a database.
Conclusion
In the end, you have to make the final decision. Just make sure you are well informed and educated on the pros and cons of how you store data. The last piece of advice I would give is to find out what heavy users of mysql are doing. Do you think they store data in a single table? Or do they build a relational model and use it the way it was designed to be used?
When you say "I am going to put everything into a single table", you are saying that you know more about performance and can make better choices for optimization in your code than the team of developers that constantly work on MySQL to make it what it is today. Consider weighing your knowledge against the cumulative knowledge of the MySQL team and the DBAs, companies, and members of the database community who use it every day.

At a certain point you should look at the "short row model", also know as entity-key-value stores,as well as the traditional "long row model".
If you look at the schema used by WordPress you will see that there is a table wp_posts with 23 columns and a related table wp_post_meta with 4 columns (meta_id, post_id, meta_key, meta_value). The meta table is a "short row model" table that allows WordPress to have an infinite collection of attributes for a post.
Neither the "long row model" or the "short row model" is the best model, often the best choice is a combination of the two. As #nevillek pointed out searching and validating "short row" is not easy, fetching data can involve pivoting which is annoyingly difficult in MySql and Oracle.
The "long row model" is easier to validate, relate and fetch, but it can be very inflexible and inefficient when the data is sparse. Some rows may have only a few of the values non-null. Also you can't add new columns without modifying the schema, which could force a system outage, depending on your architecture.
I recently worked on a financial services system that had over 700 possible facts for each instrument, most had less than 20 facts. This could have been built by setting up dozens of tables, each for a particular asset class, or as a table with 700 columns, but we chose to use a combination of a table with about 20 columns containing the most popular facts and a 4 column table which contained the other facts. This design was efficient but was difficult ot access, so we built a few table functions in PL/SQL to assist with this.

I have a general comment for you,
Think about it: If you put anything more than 10-12 columns in a table even if it makes sense to put them in a table, I guess you are going to pay the price in the short term, long term and medium term.
Your 3 tables approach seems to be better than the 1 table approach, but consider making those into 5-6 tables rather than 3 tables because you still can.
Move currently, currently_position, currently_link from user-table and work from user-profile into a new table with your primary key called USERWORKPROFILE.
Move locale Information from user-profile to a newer USERPROFILELOCALE information because it is generic in nature.
And yes, all your generic attributes in all the tables should be int and not varchar.
For instance, City needs to move out to a new table called LIST_OF_CITIES with cityid.
And your attribute city should change from varchar to int and point to cityid in LIST_OF_CITIES.
Do not worry about performance issues; the more tables you have, better the performance, because you are actually handing out the performance to the database provider instead of taking it all in your own hands.

Related

Having data stored across tables representing individual data types - Why is it wrong?

Say I have lots of time to waste and decide to make a database where information is not stored as entities but in separate inter-related tables representing INT,VARCHAR,DATE,TEXT, etc types.
It would be such a revolution to never have to design a database structure ever again except that the fact no-one else has done it probably indicates it's not a good idea :p
So why is this a bad design ? What principles is this going against ? What issues could it cause from a practical point of view with a relational database ?
P.S: This is for the learning exercise.
Why shouldn't you separate out the fields from your tables based on their data types? Well, there are two reasons, one philosophical, and one practical.
Philosophically, you're breaking normalization
A properly normalized database will have different tables for different THINGS, with each table having all fields necessary and unique for that specific "thing." If the only way to find the make, model, color, mileage, manufacture date, and purchase date of a given car in my CarCollectionDatabase is to join meaningless keys on three tables demarked by data-type, then my database has almost zero discoverablity and no real cohesion.
If you designed a database like that, you'd find writing queries and debugging statements would be obnoxiously tiresome. Which is kind of the reason you'd use a relational database in the first place.
(And, really, that will make writing queries WAY harder.)
Practically, databases don't work that way.
Every database engine or data-storage mechanism i've ever seen is simply not meant to be used with that level of abstraction. Whatever engine you had, I don't know how you'd get around essentially doubling your data design with fields. And with a five-fold increase in row count, you'd have a massive increase in index size, to the point that once you get a few million rows your indexes wouldn't actually help.
If you tried to design a database like that, you'd find that even if you didn't mind the headache, you'd wind up with slower performance. Instead of 1,000,000 rows with 20 fields, you'd have that one table with just as many fields, and some 5-6 extra tables with 1,000,000+ entries each. And even if you optimized that away, your indexes would be larger, and larger indexes run slower.
Of course, those two ONLY apply if you're actually talking about databases. There's no reason, for example, that an application can't serialize to a text file of some sort (JSON, XML, etc.) and never write to a database.
And just because your application needs to store SQL data doesn't mean that you need to store everything, or can't use homogenous and generic tables. An Access-like application that lets user define their own "tables" might very well keep each field on a distinct row... although in that case your database's THINGS would be those tables and their fields. (And it wouldn't run as fast as a natively written database.)

SQL one-to-one relationships vs flattening

I'm using a standard SQL database and I'm trying to figure out whether or not to flatten a table or make it more "object-oriented". To me, smaller tables are easier to read but it would require joining tables and having one-to-one relationships. Is this generally a good way of doing things or is it frowned on in the SQL world?
I have a table which has the following attributes:
MYTABLE
- ID
- NAME
- LABEL
- CREATED_TS
- MODIFIED_TS
- CREATED_USER
- MODIFIED_USER
To me, the created/modified fields would be their own object. There are actually a few more fields as well so it's not really just this small. I would think that creating another table called "MYTABLE_MODINFO" or something like that which would have the CREATED and MODIFIED fields and they would be joined when data from them was needed. These tables aren't high access tables, they wouldn't have tons of queries per minute or even hundreds of rows in them, so I don't think efficiency would be much of an issue.
So mainly what I'm wondering is would this be a generally accepted design or should you generally keep your table structures flat?
You should create audit information in the same table. The reason is that this data is part of the row and is a one to one relationship, so there is no point in branching it apart.
If you want to store the audit info (audit tracking/history), then you can create another table, however in most cases I have seen this built by "duplicating" data and creating a surrogate key and mappings back to the original row. The reason I list duplicating in quotes is because auditing inherently requires duplication of the old data...if it is linked and changeable after being written, then it is not really an audit.
Just my two cents. If it does not make sense, then I can provide some examples. But, the gist is that each row will only ever have one current piece of modification information, so why break it out if it will never have more than one?
avoid a database 'one to one', you'll lose performance, scalability, independence. can you imagine what happen if you want to store 2 pictures per ID? will you create another field or will you repeat the row??... it's easier to create relationship to have more freedom when you want to upgrade, please review this tutorials.
http://www.youtube.com/watch?v=Onzm-PxSjtE
http://folkworm.ceri.memphis.edu/ew/SCHEMA_DOC/comparison/erd.htm
http://www.visual-paradigm.com/product/vpuml/provides/dbmodeling.jsp
Beside that you should normalize the DB to be sure that everything is in the best shape possible. Remember that the most important is to take what you need and adapt it.
http://databases.about.com/od/specificproducts/a/normalization.htm
http://www.youtube.com/watch?v=xzeuBwHkKxw
RDBMS design aren't the same with object-oriented approach in my view. the example you mentioned aren't different objects domain but data inheritance of your record. Since there would not be any overhead of tons of queries/execution of the table so you should keep them in the same table for auditing purpose and also easier to work with at normalize data.

Database Design For Tournament Management Software

I'm currently designing a web application using php, javascript, and MySQL. I'm considering two options for the databases.
Having a master table for all the tournaments, with basic information stored there along with a tournament id. Then I would create divisions, brackets, matches, etc. tables with the tournament id appended to each table name. Then when accessing that tournament, I would simply do something like "SELECT * FROM BRACKETS_[insert tournamentID here]".
My other option is to just have generic brackets, divisions, matches, etc. tables with each record being linked to the appropriate tournament, (or matches to brackets, brackets to divisions etc.) by a foreign key in the appropriate column.
My concern with the first approach is that it's a bit too on the fly for me, and seems like the database could get messy very quickly. My concern with the second approach is performance. This program will hopefully have a national if not international reach, and I'm concerned with so many records in a single table, and with so many people possibly hitting it at the same time, it could cause problems.
I'm not a complete newb when it comes to database management; however, this is the first one I've done completely solo, so any and all help is appreciated. Thanks!
Do not create tables for each tournament. A table is a type of an entity, not an instance of an entity. Maintainability and scalability would be horrible if you mix up those concepts. You even say so yourself:
This program will hopefully have a national if not international reach, and I'm concerned with so many records in a single table, and with so many people possibly hitting it at the same time, it could cause problems.
How on Earth would you scale to that level if you need to create a whole table for each record?
Regarding the performance of your second approach, why are you concerned? Do you have specific metrics to back up those concerns? Relational databases tend to be very good at querying relational data. So keep your data relational. Don't try to be creative and undermine the design of the database technology you're using.
You've named a few types of entities:
Tournament
Division
Bracket
Match
Competitor
etc.
These sound like tables to me. Manage your indexes based on how you query the data (that is, don't over-index or you'll pay for it with inserts/updates/deletes). Normalize the data appropriately, de-normalize where audits and reporting are more prevalent, etc. If you're worried about performance then keep an eye on the query execution paths for the ways in which you access the data. Slight tweaks can make a big difference.
Don't pre-maturely optimize. It adds complexity without any actual reason.
First, find the entities that you will need to store; things like tournament, event, team, competitor, prize etc. Each of these entities will probably be tables.
It is standard practice to have a primary key for each of them. Sometimes there are columns (or group of columns) that uniquely identify a row, so you can use that as primary key. However, usually it's best just to have a column named ID or something similar of numeric type. It will be faster and easier for the RDBMS to create and use indexes for such columns.
Store the data where it belongs: I expect to see the date and time of an event in the events table, not in the prizes table.
Another crucial point is conforming to the First normal form, since that assures data atomicity. This is important because it will save you a lot of headache later on. By doing this correctly, you will also have the correct number of tables.
Last but not least: add relevant indexes to the columns that appear most often in queries. This will help a lot with performance. Don't worry about tables having too many rows, RDBMS-es these days handle table with hundreds of millions of rows, they're designed to be able to do that efficiently.
Beside compromising the quality and maintainability of your code (as others have pointed out), it's questionable whether you'd actually gain any performance either.
When you execute...
SELECT * FROM BRACKETS_XXX
...the DBMS needs to find the table whose name matches "BRACKETS_XXX" and that search is done in the DBMS'es data dictionary which itself is a bunch of tables. So, you are replacing a search within your tables with a search within data dictionary tables. You pay the price of the search either way.
(The dictionary tables may or may not be "real" tables, and may or may not have similar performance characteristics as real tables, but I bet these performance characteristics are unlikely to be better than "normal" tables for large numbers of rows. Also, performance of data dictionary is unlikely to be documented and you really shouldn't rely on undocumented features.)
Also, the DBMS would suddenly need to prepare many more SQL statements (since they are now different statements, referring to separate tables), which would present the additional pressure on performance.
The idea of creating new tables whenever a new instance of an item appears is really bad, sorry.
A (surely incomplete) list of why this is a bad idea:
Your code will need to automatically add tables whenever a new Division or whatever is created. This is definitely a bad practice and should be limited to extremely niche cases - which yours definitely isn't.
In case you decide to add or revise a table structure later (e.g. adding a new field) you will have to add it to hundreds of tables which will be cumbersome, error prone and a big maintenance headache
A RDBMS is built to scale in terms of rows, not tables and associated (indexes, triggers, constraints) elements - so you are working against your tool and not with it.
THIS ONE SHOULD BE THE REAL CLINCHER - how do you plan to handle requests like "list all matches which were played on a Sunday" or "find the most recent three brackets where Frank Perry was active"?
You say:
I'm not a complete newb when it comes to database management; however, this is the first one I've done completely solo...
Can you remember another project where tables were cloned whenever a new set was required? If yes, didn't you notice some problems with that approach? If not, have you considered that this is precisely what a DBA would never ever do for any reason whatsoever?

MySQL: multiple tables or one table with many columns? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 11 months ago.
The community reviewed whether to reopen this question 11 months ago and left it closed:
Original close reason(s) were not resolved
Improve this question
So this is more of a design question.
I have one primary key (say the user's ID), and I have tons of information associated with that user.
Should I have multiple tables broken down into categories according to the information, or should I have just one table with many columns?
The way I used to do it was to have multiple tables, so say, one table for application usage data, one table for profile info, one table for back end tokens etc. to keep things looking organized.
Recently some one told me that it's better not to do it that way and having a table with lots of columns is fine. The thing is, all those columns have the same primary key.
I'm pretty new to database design so which approach is better and what are the pros and cons?
What's the conventional way of doing it?
Any time information is one-to-one (each user has one name and password), then it's probably better to have it one table, since it reduces the number of joins the database will need to do to retrieve results. I think some databases have a limit on the number of columns per table, but I wouldn't worry about it in normal cases, and you can always split it later if you need to.
If the data is one-to-many (each user has thousands of rows of usage info), then it should be split into separate tables to reduce duplicate data (duplicate data wastes storage space, cache space, and makes the database harder to maintain).
You might find the Wikipedia article on database normalization interesting, since it discusses the reasons for this in depth:
Database normalization is the process of organizing the fields and tables of a relational database to minimize redundancy and dependency. Normalization usually involves dividing large tables into smaller (and less redundant) tables and defining relationships between them. The objective is to isolate data so that additions, deletions, and modifications of a field can be made in just one table and then propagated through the rest of the database via the defined relationships.
Denormalization is also something to be aware of, because there are cases where repeating data is better (since it reduces the amount of work the database needs to do when reading data). I'd highly recommend making your data as normalized as possible to start out, and only denormalize if you're aware of performance problems in specific queries.
One big table is often a poor choice. Related tables are what relational database were designed to work with. If you index properly and know how to write performant queries, they are going to perform fine.
When tables get too many columns, then you can run into issues with the actual size of the page that the database is storing the information on. Either the record can end up being too large for the page, in which can you may end up not being able to create or update a specific record which makes users unhappy or you may (in SQL Server at least) be allowed some overflow for particular datatypes (with a set of rules you need to look up if you are doing this) but if many records will overflow the page size you can create tremedous performance problems. Now how MYSQL handles the pages and whether you have a problem when the potential page size gets too large is something you would have to look up in the documentation for that database.
Came across this, and as someone who used to use MySQL a lot, and then switched over to Postgres recently, one of the big advantages is that you can add JSON objects to a field in Postgres.
So if you are in this situation, you don't have to necessarily decide between one large table with many columns and splitting it up, but you can merge columns into JSON objects to reduce it e.g. instead of address being 5 columns, it can just be one. You can also query on that object too.
I have a good example. Overly Normalized database with the following set of relationships:
people -> rel_p2staff -> staff
and
people -> rel_p2prosp -> prospects
Where people has names and persons details, staff has just the staff record details, prospects has just prospects details, and the rel tables are relationship tables with foreign keys from people linking to staff and prospects.
This sort of design carries on for entire database.
Now to query this set of relations it's a multi-table join every time, sometimes 8 and more table join. It has been working fine up to mid this year, when it started getting very slow now that we past 40000 records of people.
Indexing and all low hanging fruits had been used up last year, all queries are optimized to perfection. This is the end of the road for the particular normalized design and management now approved a rebuilt of entire application that depends on it as well as restructure of the database, over a term of 6 months. $$$$ Ouch.
The solution will be to have a direct relation for people -> staff and people -> prospect
ask yourself these questions if you put everything in one table, will you have multiple rows for that user? If you have to update a user do you want to keep an audit trail? Can the user have more than one instance of a data element? (like phone number for instance) will you have a case where you might want to add an element or set of elements later?
if you answer yes then most likely you want to have child tables with foreign key relationships.
Pros of parent/child tables is data integrity, performance via indexes (yes you can do it on a flat table also) and IMO easier to maintain if you need to add a field later, especially if it will be a required field.
Cons design is harder, queries become slightly more complex
But, there are many cases where one big flat table will be appropriate so you have to look at your situation to decide.
I'm already done doing some sort of database design. for me, it depends on the difficulty of the system with database management; yeah it is true to have unique data in one place only but it is really hard to make queries with overly normalized database with lots of record. Just combine the two schema; use one huge table if you feel that you'll be having a massive records that are hard to maintain just like facebook,gmail,etc. and use different table for one set of record for simple system... well this is just my opinion .. i hope it could help.. just do it..you can do it... :)
The conventional way of doing this would be to use different tables as in a star schema or snowflake schema. Howeevr, I would base this strategy to be two fold. I believe in the theory that data should only exist in one place, there for the schema I mentioned would work well. However, I also believe that for reporting engines and BI suites, a columnar approach would be hugely beneficial becuase it is more supportive of the the reporting needs. Columnar approaches like those with infobright.org have huge performance gains and compression that makes using both approaches incredibly useful. Alot of companies are starting to realize that have just one database architecture in the organization is not supportive of the full range of their needs. Alot of companies are implementing both the concept of having more than one database achitecture.
i think having a single table is more effective but you should make sure that the table is organised in a manner that it shows the relationship,trend as well as the difference in variables of the same row.
for example if the table shows age and grades of the students you should arange the table in a manner that thank highest scorer is well differentiated with the lowest scorer and the difference in the age of students is even.

is better to create tables based on content or views?

i'm learning mysql and was working on a database for work. Everything's fine so far but I had a question. I am organizing financial statements for firms(balance sheet table, income statement table, cashflow table,etc.) and most companies have quarterly statements(they are unaudited) and annual statements(which are audited). Right now for each statement I have a column that flags it for annual or quarterly.
Its not likely that someone will be running a report on an audited and unaudited statement at the same time, so I was thinking if it was worth it to create a table for audited and one for unaudited. The reason I was thinking this was eventually the data will get fairly large and I thought the smaller the tables the faster performance.
So when I design a database should I be designing based on the content(i.e. group everything thats the same regardless) or should I be grouping based on how people will access it?
Another question this raises is should I be grouping financial statements by countries..since all analysis down at our firm in 90% within the same country
This is impossible to answer definitively without knowing the whole problem.
However, usually you want a single table to represent each logical entity in your system. From the sound of it, quarterly and annual statements represent the same logical entity, but differ by a single category column/field. The same holds true for the country question--if the only difference is the country (a categorization), then they likely should all be stored in the same table.
If you were to split your data into separate tables by category, your data would be scattered across multiple tables, and would be very hard to query. For example, if you wanted a count of all statements in the system, you would have to query ALL country tables and add the results together.
Edit: Joe Celko calls this anti-pattern "Attribute Splitting".
First of all I have to point out, I'm not a professional DB designer.
But if I ware you, in this case I would create one table as the entities are the same basically.
If you fear of mysql's performace on lager datasets, maybe it would be better to start building your app on Postgres. You can boost mysql's performace with stored functions/procedures or maybe views if you have to run complicated queries and of course you can use memcache or any nosql stuff to let the SQL rest a bit.
If you are sure in that users will search mainly only for this or that type of records, you can build three tables. One for all of the records, one-one for the audited and unaudited ones. You can keep them syncronized with the InnoDB's triggers (ON UPDATE/DELETE/INSERT). They could work like views, but I think (not tested) they would be faster then views. In this case you have to manage only the first "large" table. If you insert an audited record, the trigger fires and puts a record in to the audited table an so on...
Best wishes!
I agree with Phil and Damien - one table is better. What you want is one table per type of real business thing. If you design your tables to resemble real things, even abstract or conceptual things, then your data design is more likely to stand the test of time. Once you've sketched out a schema based on the real things you have data about, then you can go back and apply the rules of normalization to formalize your design.
As a rule, it is a bad idea to design for a performance problem you are worried about, but haven't actually seen. Your intuition about big tables being slower might actually be wrong. Most DBMS systems like bigger tables, at least to a point. When tables are big the query optimizers choose to use indexes. When tables are small they often end up getting full table scans, which can really slow down concurrent access. If your tables get so big that they are beyond the capabilities of your DBMS then it is time to consider either archiving out old data that you aren't using anymore or buying a more scalable DBMS.