Understanding stateful LSTM [closed] - deep-learning

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 2 years ago.
Improve this question
I'm going through this tutorial on RNNs/LSTMs and I'm having quite a hard time understanding stateful LSTMs. My questions are as follows :
1. Training batching size
In the Keras docs on RNNs, I found out that the hidden state of the sample in i-th position within the batch will be fed as input hidden state for the sample in i-th position in the next batch. Does that mean that if we want to pass the hidden state from sample to sample we have to use batches of size 1 and therefore perform online gradient descent? Is there a way to pass the hidden state within a batch of size >1 and perform gradient descent on that batch ?
2. One-Char Mapping Problems
In the tutorial's paragraph 'Stateful LSTM for a One-Char to One-Char Mapping' were given a code that uses batch_size = 1 and stateful = True to learn to predict the next letter of the alphabet given a letter of the alphabet. In the last part of the code (line 53 to the end of the complete code), the model is tested starting with a random letter ('K') and predicts 'B' then given 'B' it predicts 'C', etc. It seems to work well except for 'K'. However, I tried the following tweak to the code (last part too, I kept lines 52 and above):
# demonstrate a random starting point
letter1 = "M"
seed1 = [char_to_int[letter1]]
x = numpy.reshape(seed, (1, len(seed), 1))
x = x / float(len(alphabet))
prediction = model.predict(x, verbose=0)
index = numpy.argmax(prediction)
print(int_to_char[seed1[0]], "->", int_to_char[index])
letter2 = "E"
seed2 = [char_to_int[letter2]]
seed = seed2
print("New start: ", letter1, letter2)
for i in range(0, 5):
x = numpy.reshape(seed, (1, len(seed), 1))
x = x / float(len(alphabet))
prediction = model.predict(x, verbose=0)
index = numpy.argmax(prediction)
print(int_to_char[seed[0]], "->", int_to_char[index])
seed = [index]
model.reset_states()
and these outputs:
M -> B
New start: M E
E -> C
C -> D
D -> E
E -> F
It looks like the LSTM did not learn the alphabet but just the positions of the letters, and that regardless of the first letter we feed in, the LSTM will always predict B since it's the second letter, then C and so on.
Therefore, how does keeping the previous hidden state as initial hidden state for the current hidden state help us with the learning given that during test if we start with the letter 'K' for example, letters A to J will not have been fed in before and the initial hidden state won't be the same as during training ?
3. Training an LSTM on a book for sentence generation
I want to train my LSTM on a whole book to learn how to generate sentences and perhaps learn the authors style too, how can I naturally train my LSTM on that text (input the whole text and let the LSTM figure out the dependencies between the words) instead of having to 'artificially' create batches of sentences from that book myself to train my LSTM on? I believe I should use stateful LSTMs could help but I'm not sure how.

Having a stateful LSTM in Keras means that a Keras variable will be used to store and update the state, and in fact you could check the value of the state vector(s) at any time (that is, until you call reset_states()). A non-stateful model, on the other hand, will use an initial zero state every time it processes a batch, so it is as if you always called reset_states() after train_on_batch, test_on_batch and predict_on_batch. The explanation about the state being reused for the next batch on stateful models is just about that difference with non-stateful; of course the state will always flow within each sequence in the batch and you do not need to have batches of size 1 for that to happen. I see two scenarios where stateful models are useful:
You want to train on split sequences of data because these are very long and it would not be practical to train on their whole length.
On prediction time, you want to retrieve the output for each time point in the sequence, not just at the end (either because you want to feed it back into the network or because your application needs it). I personally do that in the models that I export for later integration (which are "copies" of the training model with batch size of 1).
I agree that the example of an RNN for the alphabet does not really seem very useful in practice; it will only work when you start with the letter A. If you want to learn to reproduce the alphabet starting at any letter, you would need to train the network with that kind of examples (subsequences or rotations of the alphabet). But I think a regular feed-forward network could learn to predict the next letter of the alphabet training on pairs like (A, B), (B, C), etc. I think the example is meant for demonstrative purposes more than anything else.
You may have probably already read it, but the popular post The Unreasonable Effectiveness of Recurrent Neural Networks shows some interesting results along the lines of what you want to do (although it does not really dive into implementation specifics). I don't have personal experience training RNN with textual data, but there is a number of approaches you can research. You can build character-based models (like the ones in the post), where your input and receive one character at a time. A more advanced approach is to do some preprocessing on the texts and transform them into sequences of numbers; Keras includes some text preprocessing functions to do that. Having one single number as feature space is probably not going to work all that well, so you could simply turn each word into a vector with one-hot encoding or, more interestingly, have the network learn the best vector representation for each for, which is what they call en embedding. You can go even further with the preprocessing and look into something like NLTK, specially if you want to remove stop words, punctuation and things like that. Finally, if you have sequences of different sizes (e.g. you are using full texts instead of excerpts of a fixed size, which may or may not be important for you) you will need to be a bit more careful and use masking and/or sample weighting. Depending on the exact problem, you can set up the training accordingly. If you want to learn to generate similar text, the "Y" would be the similar to the "X" (one-hot encoded), only shifted by one (or more) positions (in this case you may need to use return_sequences=True and TimeDistributed layers). If you want to determine the autor, your output could be a softmax Dense layer.
Hope that helps.

Related

Would this be a valid Implementation of an ordinal CrossEntropy?

Would this be a valid implementation of a cross entropy loss that takes the ordinal structure of the GT y into consideration? y_hat is the prediction from a neural network.
ce_loss = F.cross_entropy(y_hat, y, reduction="none")
distance_weight = torch.abs(y_hat.argmax(1) - y) + 1
ordinal_ce_loss = torch.mean(distance_weight * ce_loss)
I'll attempt to answer this question by first fully defining the task, since the question is a bit sparse on details.
I have a set of ordinal classes (e.g. first, second, third, fourth,
etc.) and I would like to predict the class of each data example from
among this set. I would like to define an entropy-based loss-function
for this problem. I would like this loss function to weight the loss
between a predicted class torch.argmax(y_hat) and the true class y
according to the ordinal distance between the two classes. Does the
given loss expression accomplish this?
Short answer: sure, it is "valid". You've roughly implemented L1-norm ordinal class weighting. I'd question whether this is truly the correct weighting strategy for this problem.
For instance, consider that for a true label n, the bin n response is weighted by 1, but the bin n+1 and n-1 responses are weighted by 2. This means that a lot more emphasis will be placed on NOT predicting false positives than on correctly predicting true positives, which may imbue your model with some strange bias.
It also means that examples on the edge will result in a larger total sum of weights, meaning that you'll be weighting examples where the true label is say "first" or "last" more highly than the intermediate classes. (Say you have 5 classes: 1,2,3,4,5. A true label of 1 will require distance_weight of [1,2,3,4,5], the sum of which is 15. A true label of 3 will require distance_weight of [3,2,1,2,3], the sum of which is 11.
In general, classification problems and entropy-based losses are underpinned by the assumption that no set of classes or categories is any more or less related than any other set of classes. In essence, the input data is embedded into an orthogonal feature space where each class represents one vector in the basis. This is quite plainly a bad assumption in your case, meaning that this embedding space is probably not particularly elegant: thus, you have to correct for it with sort of a hack-y weight fix. And in general, this assumption of class non-correlation is probably not true in a great many classification problems (consider e.g. the classic ImageNet classification problem, wherein the class pairs [bus,car], and [bus,zebra] are treated as equally dissimilar. But this is probably a digression into the inherent lack of usefulness of strict ontological structuring of information which is outside the scope of this answer...)
Long Answer: I'd highly suggest moving into a space where the ordinal value you care about is instead expressed in a continuous space. (In the first, second, third example, you might for instance output a continuous value over the range [1,max_place]. This allows you to benefit from loss functions that already capture well the notion that predictions closer in an ordered space are better than predictions farther away in an ordered space (e.g. MSE, Smooth-L1, etc.)
Let's consider one more time the case of the [first,second,third,etc.] ordinal class example, and say that we are trying to predict the places of a set of runners in a race. Consider two races, one in which the first place runner wins by 30% relative to the second place runner, and the second in which the first place runner wins by only 1%. This nuance is entirely discarded by the ordinal discrete classification. In essence, the selection of an ordinal set of classes truncates the amount of information conveyed in the prediction, which means not only that the final prediction is less useful, but also that the loss function encodes this strange truncation and binarization, which is then reflected (perhaps harmfully) in the learned model. This problem could likely be much more elegantly solved by regressing the finishing position, or perhaps instead by regressing the finishing time, of each athlete, and then performing the final ordinal classification into places OUTSIDE of the network training.
In conclusion, you might expect a well-trained ordinal classifier to produce essentially a normal distribution of responses across the class bins, with the distribution peak on the true value: a binned discretization of a space that almost certainly could, and likely should, be treated as a continuous space.

Uses of Embedding/ Embedding layer in deep learning

I am exploring deep learning methods especially LSTM to predict next word. Suppose, My data set is like this: Each data point consists of 7 features (7 different words)(A-G here) of different length.
Group1 Group2............ Group 38
A B F
E C A
B E G
C D G
C F F
D G G
. . .
. . .
I used one hot encoding as an Input layer. Here is the model
main_input= Input(shape=(None,action_count),name='main_input')
lstm_out= LSTM(units=64,activation='tanh')(main_input)
lstm_out=Dropout(0.2)(lstm_out)
lstm_out=Dense(action_count)(lstm_out)
main_output=Activation('softmax')(lstm_out)
model=Model(inputs=[main_input],outputs=main_output)
print(model.summary())
Using this model. I got an accuracy of about 60%.
My question is how can I use embedding layer for my problem. Actually, I do not know much about embedding (why, when and how it works)[I only know one hot vector does not carry much information]. I am wondering if embedding can improve accuracy. If someone can provide me guidance in these regards, it will be greatly beneficial for me. (At least whether uses of embedding is logical or not for my case)
What are Embedding layers?
They are layers which converts positive integers ( maybe word counts ) into fixed size dense vectors. They learn the so called embeddings for a particular text dataset ( in NLP tasks ).
Why are they useful?
Embedding layers slowly learn the relationships between words. Hence, if you have a large enough corpus ( which probably contains all possible English words ), then vectors for words like "king" and "queen" will show some similarity in the mutidimensional space of the embedding.
How are used in Keras?
The keras.layers.Embedding has the following configurations:
keras.layers.Embedding(input_dim, output_dim, embeddings_initializer='uniform', embeddings_regularizer=None, activity_regularizer=None, embeddings_constraint=None, mask_zero=False, input_length=None)
Turns positive integers (indexes) into dense vectors of fixed size. eg. [[4], [20]] -> [[0.25, 0.1], [0.6, -0.2]]
This layer can only be used as the first layer in a model.
When the input_dim is the vocabulary size + 1. Vocabulary is the corpus of all the words used in the dataset. The input_length is the length of the input sequences whereas output_dim is the dimensionality of the output vectors ( the dimensions for the vector of a particular word ).
The layer can also be used wih pretrained word embeddings like Word2Vec or GloVE.
Are they suitable for my use case?
Absolutely, yes. For sentiment analysis, if we could generate a context ( embedding ) for a particular word then we could definitely increase its efficiency.
How can I use them in my use case?
Follow the steps:
You need to tokenize the sentences. Maybe with keras.preprocessing.text.Tokenizer.
Pad the sequences to a fixed length using keras.preprocessing.sequence.pad_sequences. This will be the input_length parameter for the Embedding layer.
Initialize the model with Embedding layer as the first layer.
Hope this helps.

CycleGAN for unpaired image to image translation

Referring to the original paper on CycleGAN i am confused about this line
The optimal G thereby translates the domain X to a domain Yˆ
distributed identically to Y . However, such a translation does not
guarantee that an individual input x and output y are paired up in a
meaningful way – there are infinitely many mappings G that will induce
the same distribution over yˆ.
I understand there are two sets of images and there is no pairing between them so when generator will taken one image lets say x from set X as input and try to translate it to an image similar to the images in Y set then my question is that there are many images present in the set Y so which y will our x be translated into? There are so many options available in set Y. Is that what is pointed out in these lines of the paper that i have written above? And is this the reason we take cyclic loss to overcome this problem and to create some type of pairing between any two random images by converting x to y and then converting y back to x?
The image x won't be translated to a concrete image y but rather to a "style" of the domain Y. The input is fed to the generator, which tries to produce a sample from the desired distribution (the other domain), the generated image then goes to the discriminator, which tries to predict if the sample is from the actual distribution or produced by the generator. This is just the normal GAN workflow.
If I understand it correctly, in the lines you quoted, authors explain the problems that arise with adversarial loss. They say it again here:
Adversarial training can, in theory, learn mappings G and F that produce outputs identically distributed as target domains Y and X respectively. However, with large enough capacity, a network can map the same set of input images to any random permutation of images in the target domain, where any of the learned mappings can induce an output distribution that matches the target distribution. Thus, an adversarial loss alone cannot guarantee that the learned function can map an individual input x_i to a desired output y_i.
This is one of the reasons for introducing the concept of cycle-consistency to produce meaningful mappings, reduce the space of possible mapping functions (can be viewed as a form of regularization). The idea is not to create a pairing between 2 random images which already are in the dataset (the dataset stays unpaired), but to make sure, that if you map a real image from the domain X to the domain Y and then back again, you get the original image back.
Cycle consistency encourages generators to avoid unnecessary changes and thus to generate images that share structural similarity with inputs, it also prevents generators from excessive hallucinations and mode collapse.
I hope that answers your questions.

How to build deep learning model that picks words from serval distinct bags and forms a meaningful sentence [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 4 years ago.
Improve this question
Image of Bags and how to choose from them
Imagine I have 10 bags,Ordered one after other.ie Bag 1 , Bag 2 ......... Bag n.
Each bag has distinct set of words.
In order to understand what a bag is,
Consider we have a vocabulary of 10,000 words.
The first bag contains words Hello , India , Manager.
ie Bag 1 will have 1's at the words index present in the bag.
ex:Bag 1 will be of size 10000*1
if Hello's index was 1 India's index was 2 and Manager's was 4
It will be
[0 , 1, 1, 0 , 1 ,0,0,0,0.........]
*I dont have a model yet.
*I'm thinking to use story books,But its still kind of abstract for me.
A word has to chosen from each bag and assigned a number word 1(word from bag 1)
word 2(word from bag 2) and they must form a MEANINGFULL sentence in their numerical order.!
First, we need a way that the computer can recognise a word otherwise it cannot pick the correct one. That means at this stage, we need to decide what we are teaching the computer to begin with (ie what is a verb, noun, grammar) but I will assume we will dump a dictionary into it and give no information except the words themselves.
So that the computer can compute what sentences are, we need to convert them to numbers (one way would be to work alphabetically starting at 1, using them as keys for a dictionary (digital this time(!)) and the word as the value). Now we can apply the same linear algebra techniques to this problem as any other problem.
So we need to make generations of matrices of weights to multiply into the keys of the dictionary, then remove all the weights beyond the range of dictionary keys, the rest can be used to get the value in the dictionary and make a sentence. Optionally, you can also use a threshold value to take off of all the outputs of the matrix multiplication
Now for the hard part: learning. Once you have a few (say 100) matrices, we need to "breed" the best ones (this is where human intervention is needed) and you need to pick the 50 most meaningful sentences (might be hard at first) and use them to base your next 100 of (easiest way would be to weight the 50 matrices randomly for a weighted mean 100 times).
And the boring bit, keep running the generations over and over until you get to a point where your sentences are meaningful most of the time (of course there is no guarantee that it will always be meaningful but that's the nature of ANN's)
If you find it doesn't work, you can use more layers (more matrices) and/or I recently heard of a different technique that dynamically changed the network but I can't really help with that.
Have a database with thousands/millions of valid sentences.
Create a dictionary where each word represents a number (reserve 0 for "nothing", 1 for "start of sentence" and 2 for "end of sentence").
word_dic = { "_nothing_": 0, "_start_": 1, "_end_": 2, "word1": 3, "word2": 4, ...}
reverse_dic = {v:k for k,v in word_dic.items()}
Remember to add "_start_" and "_end_" at the beginning and end of all sentences in the database, and "_nothing_" after the end to complete the desired length capable of containing all sentences. (Ideally, work with sentences with 10 or less words, so your model wont't try to create bigger sentences).
Transform all your sentences into sequences of indices:
#supposing you have an array of shape (sentences, length) as string:
indices = []
for word in database.reshape((-1,)):
indices.append(word_dic[word])
indices = np.array(indices).reshape((sentences,length))
Transform this into categorical words with the keras function to_categorical()
cat_sentences = to_categorical(indices) #shape (sentences,length,dictionary_size)
Hint: keras has lots of useful text preprocessing functions here.
Separate training input and output data:
#input is the sentences except for the last word
x_train = cat_sentences[:,:-1,:]
y_train = cat_sentences[:,1:,:]
Let's create an LSTM based model that will predict the next words from the previous words:
model = Sequential()
model.add(LSTM(dontKnow,return_sequences=True,input_shape=(None,dictionary_size)))
model.add(.....)
model.add(LSTM(dictionary_size,return_sequences=True,activation='sigmoid'))
#or a Dense(dictionary_size,activation='sigmoid')
Compile and fit this model with x_train and y_train:
model.compile(....)
model.fit(x_train,y_train,....)
Create an identical model using stateful=True in all LSTM layers:
newModel = ......
Transfer the weights from the trained model:
newModel.set_weights(model.get_weights())
Create your bags in a categorical way, shape (10, dictionary_size).
Use the model to predict one word from the _start_ word.
#reset the states of the stateful model before you start a 10 word prediction:
newModel.reset_states()
firstWord = newModel.predict(startWord) #startword is shaped as (1,1,dictionary_size)
The firstWord will be a vector with size dictionary_size telling (sort of) the probabilities of each existing word. Compare to the words in the bag. You can choose the highest probability, or use some random selecting if the probabilities of other words in the bag are also good.
#example taking the most probable word:
firstWord = np.array(firstWord == firstWord.max(), dtype=np.float32)
Do the same again, but now input firstWord in the model:
secondWord = newModel.predict(firstWord) #respect the shapes
Repeat the process until you get a sentence. Notice that you may find _end_ before the 10 words in the bag are satisfied. You may decide to finish the process with a shorter sentence then, especially if other word probabilities are low.

Can I use autoencoder for clustering?

In the below code, they use autoencoder as supervised clustering or classification because they have data labels.
http://amunategui.github.io/anomaly-detection-h2o/
But, can I use autoencoder to cluster data if I did not have its labels.?
Regards
The deep-learning autoencoder is always unsupervised learning. The "supervised" part of the article you link to is to evaluate how well it did.
The following example (taken from ch.7 of my book, Practical Machine Learning with H2O, where I try all the H2O unsupervised algorithms on the same data set - please excuse the plug) takes 563 features, and tries to encode them into just two hidden nodes.
m <- h2o.deeplearning(
2:564, training_frame = tfidf,
hidden = c(2), auto-encoder = T, activation = "Tanh"
)
f <- h2o.deepfeatures(m, tfidf, layer = 1)
The second command there extracts the hidden node weights. f is a data frame, with two numeric columns, and one row for every row in the tfidf source data. I chose just two hidden nodes so that I could plot the clusters:
Results will change on each run. You can (maybe) get better results with stacked auto-encoders, or using more hidden nodes (but then you cannot plot them). Here I felt the results were limited by the data.
BTW, I made the above plot with this code:
d <- as.matrix(f[1:30,]) #Just first 30, to avoid over-cluttering
labels <- as.vector(tfidf[1:30, 1])
plot(d, pch = 17) #Triangle
text(d, labels, pos = 3) #pos=3 means above
(P.S. The original data came from Brandon Rose's excellent article on using NLTK. )
In some aspects encoding data and clustering data share some overlapping theory. As a result, you can use Autoencoders to cluster(encode) data.
A simple example to visualize is if you have a set of training data that you suspect has two primary classes. Such as voter history data for republicans and democrats. If you take an Autoencoder and encode it to two dimensions then plot it on a scatter plot, this clustering becomes more clear. Below is a sample result from one of my models. You can see a noticeable split between the two classes as well as a bit of expected overlap.
The code can be found here
This method does not require only two binary classes, you could also train on as many different classes as you wish. Two polarized classes is just easier to visualize.
This method is not limited to two output dimensions, that was just for plotting convenience. In fact, you may find it difficult to meaningfully map certain, large dimension spaces to such a small space.
In cases where the encoded (clustered) layer is larger in dimension it is not as clear to "visualize" feature clusters. This is where it gets a bit more difficult, as you'll have to use some form of supervised learning to map the encoded(clustered) features to your training labels.
A couple ways to determine what class features belong to is to pump the data into knn-clustering algorithm. Or, what I prefer to do is to take the encoded vectors and pass them to a standard back-error propagation neural network. Note that depending on your data you may find that just pumping the data straight into your back-propagation neural network is sufficient.