CycleGAN for unpaired image to image translation - deep-learning

Referring to the original paper on CycleGAN i am confused about this line
The optimal G thereby translates the domain X to a domain Yˆ
distributed identically to Y . However, such a translation does not
guarantee that an individual input x and output y are paired up in a
meaningful way – there are infinitely many mappings G that will induce
the same distribution over yˆ.
I understand there are two sets of images and there is no pairing between them so when generator will taken one image lets say x from set X as input and try to translate it to an image similar to the images in Y set then my question is that there are many images present in the set Y so which y will our x be translated into? There are so many options available in set Y. Is that what is pointed out in these lines of the paper that i have written above? And is this the reason we take cyclic loss to overcome this problem and to create some type of pairing between any two random images by converting x to y and then converting y back to x?

The image x won't be translated to a concrete image y but rather to a "style" of the domain Y. The input is fed to the generator, which tries to produce a sample from the desired distribution (the other domain), the generated image then goes to the discriminator, which tries to predict if the sample is from the actual distribution or produced by the generator. This is just the normal GAN workflow.
If I understand it correctly, in the lines you quoted, authors explain the problems that arise with adversarial loss. They say it again here:
Adversarial training can, in theory, learn mappings G and F that produce outputs identically distributed as target domains Y and X respectively. However, with large enough capacity, a network can map the same set of input images to any random permutation of images in the target domain, where any of the learned mappings can induce an output distribution that matches the target distribution. Thus, an adversarial loss alone cannot guarantee that the learned function can map an individual input x_i to a desired output y_i.
This is one of the reasons for introducing the concept of cycle-consistency to produce meaningful mappings, reduce the space of possible mapping functions (can be viewed as a form of regularization). The idea is not to create a pairing between 2 random images which already are in the dataset (the dataset stays unpaired), but to make sure, that if you map a real image from the domain X to the domain Y and then back again, you get the original image back.
Cycle consistency encourages generators to avoid unnecessary changes and thus to generate images that share structural similarity with inputs, it also prevents generators from excessive hallucinations and mode collapse.
I hope that answers your questions.

Related

How to use K means clustering to visualise learnt features of a CNN model?

Recently I was going through the paper : "Intriguing Properties of Contrastive Losses"(https://arxiv.org/abs/2011.02803). In the paper(section 3.2) the authors try to determine how well the SimCLR framework has allowed the ResNet50 Model to learn good quality/generalised features that exhibit hierarchical properties. To achieve this, they make use of K-means on intermediate features of the ResNet50 model (intermediate means o/p of block 2,3,4..) & quote the reason -> "If the model learns good representations then regions of similar objects should be grouped together".
Final Results :
KMeans feature visualisation
I am trying to replicate the same procedure but with a different model (like VggNet, Xception), are there any resources explaining how to perform such visualisations ?
The procedure would be as follow:
Let us assume that you want to visualize the 8th layer from VGG. This layer's output might have the shape (64, 64, 256) (I just took some random numbers, this does not correspond to actual VGG). This means that you have 4096 256-dimensional vectors (for one specific image). Now you can apply K-Means on these vectors (for example with 5 clusters) and then color your image corresponding to the clustering result. The coloring is easy, since the 64x64 feature map represents a scaled down version of your image, and thus you just color the corresponding image region for each of these vectors.
I don't know if it might be a good idea to do the K-Means clustering on the combined output of many images, theoretically doing it on many images and one a single one should both give good results (even though for many images you probably would increase the number of clusters to account for the higher variation in your feature vectors).

What is the effect of a row of zeros in singular value decomposition?

I am writing some CUDA code for finding the 3 parameters of a circle (centre X,Y & radius) from many (m) measurements of positions around the perimeter.
As m > 3 I am (successfully) using Singular Value Decomposition (SVD) for this purpose (using the cuSolver library). Effectively I am solving m simulaneous equations with 3 unknowns.
However, not all of my perimeter positions are valid (say q of them), and so I have to go through my initial set of m measurements and remove the q invalid ones. This involves moving the size m data array from the card to the host, processing linearly to remove the q invalid entries and then re loading the smaller (m-q) array back onto the card...
My question is; if I were to set all terms on both sides of the q invalid equations to zero, could I just run the m equations (including the zeros) through my SVD analysis (without the data transfer etc) or would this cause other problems?
My instinct tells me that this is a bit like applying weights to the data but instinct and SVD are not terms that sit well together in my experience...
I am hesitant just to try this as I don't know if it will work in some cases and not in others...
I have tested the idea by inserting rows of zeros into my matrix. The solution that I am getting is not significantly affected by this.
So I am answering my own question with a non-rigorous Yes it is OK do do this.
If anybody has a more rigorous or more considered answer I would very much like to hear it.

Understanding stateful LSTM [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 2 years ago.
Improve this question
I'm going through this tutorial on RNNs/LSTMs and I'm having quite a hard time understanding stateful LSTMs. My questions are as follows :
1. Training batching size
In the Keras docs on RNNs, I found out that the hidden state of the sample in i-th position within the batch will be fed as input hidden state for the sample in i-th position in the next batch. Does that mean that if we want to pass the hidden state from sample to sample we have to use batches of size 1 and therefore perform online gradient descent? Is there a way to pass the hidden state within a batch of size >1 and perform gradient descent on that batch ?
2. One-Char Mapping Problems
In the tutorial's paragraph 'Stateful LSTM for a One-Char to One-Char Mapping' were given a code that uses batch_size = 1 and stateful = True to learn to predict the next letter of the alphabet given a letter of the alphabet. In the last part of the code (line 53 to the end of the complete code), the model is tested starting with a random letter ('K') and predicts 'B' then given 'B' it predicts 'C', etc. It seems to work well except for 'K'. However, I tried the following tweak to the code (last part too, I kept lines 52 and above):
# demonstrate a random starting point
letter1 = "M"
seed1 = [char_to_int[letter1]]
x = numpy.reshape(seed, (1, len(seed), 1))
x = x / float(len(alphabet))
prediction = model.predict(x, verbose=0)
index = numpy.argmax(prediction)
print(int_to_char[seed1[0]], "->", int_to_char[index])
letter2 = "E"
seed2 = [char_to_int[letter2]]
seed = seed2
print("New start: ", letter1, letter2)
for i in range(0, 5):
x = numpy.reshape(seed, (1, len(seed), 1))
x = x / float(len(alphabet))
prediction = model.predict(x, verbose=0)
index = numpy.argmax(prediction)
print(int_to_char[seed[0]], "->", int_to_char[index])
seed = [index]
model.reset_states()
and these outputs:
M -> B
New start: M E
E -> C
C -> D
D -> E
E -> F
It looks like the LSTM did not learn the alphabet but just the positions of the letters, and that regardless of the first letter we feed in, the LSTM will always predict B since it's the second letter, then C and so on.
Therefore, how does keeping the previous hidden state as initial hidden state for the current hidden state help us with the learning given that during test if we start with the letter 'K' for example, letters A to J will not have been fed in before and the initial hidden state won't be the same as during training ?
3. Training an LSTM on a book for sentence generation
I want to train my LSTM on a whole book to learn how to generate sentences and perhaps learn the authors style too, how can I naturally train my LSTM on that text (input the whole text and let the LSTM figure out the dependencies between the words) instead of having to 'artificially' create batches of sentences from that book myself to train my LSTM on? I believe I should use stateful LSTMs could help but I'm not sure how.
Having a stateful LSTM in Keras means that a Keras variable will be used to store and update the state, and in fact you could check the value of the state vector(s) at any time (that is, until you call reset_states()). A non-stateful model, on the other hand, will use an initial zero state every time it processes a batch, so it is as if you always called reset_states() after train_on_batch, test_on_batch and predict_on_batch. The explanation about the state being reused for the next batch on stateful models is just about that difference with non-stateful; of course the state will always flow within each sequence in the batch and you do not need to have batches of size 1 for that to happen. I see two scenarios where stateful models are useful:
You want to train on split sequences of data because these are very long and it would not be practical to train on their whole length.
On prediction time, you want to retrieve the output for each time point in the sequence, not just at the end (either because you want to feed it back into the network or because your application needs it). I personally do that in the models that I export for later integration (which are "copies" of the training model with batch size of 1).
I agree that the example of an RNN for the alphabet does not really seem very useful in practice; it will only work when you start with the letter A. If you want to learn to reproduce the alphabet starting at any letter, you would need to train the network with that kind of examples (subsequences or rotations of the alphabet). But I think a regular feed-forward network could learn to predict the next letter of the alphabet training on pairs like (A, B), (B, C), etc. I think the example is meant for demonstrative purposes more than anything else.
You may have probably already read it, but the popular post The Unreasonable Effectiveness of Recurrent Neural Networks shows some interesting results along the lines of what you want to do (although it does not really dive into implementation specifics). I don't have personal experience training RNN with textual data, but there is a number of approaches you can research. You can build character-based models (like the ones in the post), where your input and receive one character at a time. A more advanced approach is to do some preprocessing on the texts and transform them into sequences of numbers; Keras includes some text preprocessing functions to do that. Having one single number as feature space is probably not going to work all that well, so you could simply turn each word into a vector with one-hot encoding or, more interestingly, have the network learn the best vector representation for each for, which is what they call en embedding. You can go even further with the preprocessing and look into something like NLTK, specially if you want to remove stop words, punctuation and things like that. Finally, if you have sequences of different sizes (e.g. you are using full texts instead of excerpts of a fixed size, which may or may not be important for you) you will need to be a bit more careful and use masking and/or sample weighting. Depending on the exact problem, you can set up the training accordingly. If you want to learn to generate similar text, the "Y" would be the similar to the "X" (one-hot encoded), only shifted by one (or more) positions (in this case you may need to use return_sequences=True and TimeDistributed layers). If you want to determine the autor, your output could be a softmax Dense layer.
Hope that helps.

Can I use autoencoder for clustering?

In the below code, they use autoencoder as supervised clustering or classification because they have data labels.
http://amunategui.github.io/anomaly-detection-h2o/
But, can I use autoencoder to cluster data if I did not have its labels.?
Regards
The deep-learning autoencoder is always unsupervised learning. The "supervised" part of the article you link to is to evaluate how well it did.
The following example (taken from ch.7 of my book, Practical Machine Learning with H2O, where I try all the H2O unsupervised algorithms on the same data set - please excuse the plug) takes 563 features, and tries to encode them into just two hidden nodes.
m <- h2o.deeplearning(
2:564, training_frame = tfidf,
hidden = c(2), auto-encoder = T, activation = "Tanh"
)
f <- h2o.deepfeatures(m, tfidf, layer = 1)
The second command there extracts the hidden node weights. f is a data frame, with two numeric columns, and one row for every row in the tfidf source data. I chose just two hidden nodes so that I could plot the clusters:
Results will change on each run. You can (maybe) get better results with stacked auto-encoders, or using more hidden nodes (but then you cannot plot them). Here I felt the results were limited by the data.
BTW, I made the above plot with this code:
d <- as.matrix(f[1:30,]) #Just first 30, to avoid over-cluttering
labels <- as.vector(tfidf[1:30, 1])
plot(d, pch = 17) #Triangle
text(d, labels, pos = 3) #pos=3 means above
(P.S. The original data came from Brandon Rose's excellent article on using NLTK. )
In some aspects encoding data and clustering data share some overlapping theory. As a result, you can use Autoencoders to cluster(encode) data.
A simple example to visualize is if you have a set of training data that you suspect has two primary classes. Such as voter history data for republicans and democrats. If you take an Autoencoder and encode it to two dimensions then plot it on a scatter plot, this clustering becomes more clear. Below is a sample result from one of my models. You can see a noticeable split between the two classes as well as a bit of expected overlap.
The code can be found here
This method does not require only two binary classes, you could also train on as many different classes as you wish. Two polarized classes is just easier to visualize.
This method is not limited to two output dimensions, that was just for plotting convenience. In fact, you may find it difficult to meaningfully map certain, large dimension spaces to such a small space.
In cases where the encoded (clustered) layer is larger in dimension it is not as clear to "visualize" feature clusters. This is where it gets a bit more difficult, as you'll have to use some form of supervised learning to map the encoded(clustered) features to your training labels.
A couple ways to determine what class features belong to is to pump the data into knn-clustering algorithm. Or, what I prefer to do is to take the encoded vectors and pass them to a standard back-error propagation neural network. Note that depending on your data you may find that just pumping the data straight into your back-propagation neural network is sufficient.

How to detect local maxima and curve windows correctly in semi complex scenarios?

I have a series of data and need to detect peak values in the series within a certain number of readings (window size) and excluding a certain level of background "noise." I also need to capture the starting and stopping points of the appreciable curves (ie, when it starts ticking up and then when it stops ticking down).
The data are high precision floats.
Here's a quick sketch that captures the most common scenarios that I'm up against visually:
One method I attempted was to pass a window of size X along the curve going backwards to detect the peaks. It started off working well, but I missed a lot of conditions initially not anticipated. Another method I started to work out was a growing window that would discover the longer duration curves. Yet another approach used a more calculus based approach that watches for some velocity / gradient aspects. None seemed to hit the sweet spot, probably due to my lack of experience in statistical analysis.
Perhaps I need to use some kind of a statistical analysis package to cover my bases vs writing my own algorithm? Or would there be an efficient method for tackling this directly with SQL with some kind of local max techniques? I'm simply not sure how to approach this efficiently. Each method I try it seems that I keep missing various thresholds, detecting too many peak values or not capturing entire events (reporting a peak datapoint too early in the reading process).
Ultimately this is implemented in Ruby and so if you could advise as to the most efficient and correct way to approach this problem with Ruby that would be appreciated, however I'm open to a language agnostic algorithmic approach as well. Or is there a certain library that would address the various issues I'm up against in this scenario of detecting the maximum peaks?
my idea is simple, after get your windows of interest you will need find all the peaks in this window, you can just compare the last value with the next , after this you will have where the peaks occur and you can decide where are the best peak.
I wrote one simple source in matlab to show my idea!
My example are in wave from audio file :-)
waveFile='Chick_eco.wav';
[y, fs, nbits]=wavread(waveFile);
subplot(2,2,1); plot(y); legend('Original signal');
startIndex=15000;
WindowSize=100;
endIndex=startIndex+WindowSize-1;
frame = y(startIndex:endIndex);
nframe=length(frame)
%find the peaks
peaks = zeros(nframe,1);
k=3;
while(k <= nframe - 1)
y1 = frame(k - 1);
y2 = frame(k);
y3 = frame(k + 1);
if (y2 > 0)
if (y2 > y1 && y2 >= y3)
peaks(k)=frame(k);
end
end
k=k+1;
end
peaks2=peaks;
peaks2(peaks2<=0)=nan;
subplot(2,2,2); plot(frame); legend('Get Window Length = 100');
subplot(2,2,3); plot(peaks); legend('Where are the PEAKS');
subplot(2,2,4); plot(frame); legend('Peaks in the Window');
hold on; plot(peaks2, '*');
for j = 1 : nframe
if (peaks(j) > 0)
fprintf('Local=%i\n', j);
fprintf('Value=%i\n', peaks(j));
end
end
%Where the Local Maxima occur
[maxivalue, maxi]=max(peaks)
you can see all the peaks and where it occurs
Local=37
Value=3.266296e-001
Local=51
Value=4.333496e-002
Local=65
Value=5.049438e-001
Local=80
Value=4.286804e-001
Local=84
Value=3.110046e-001
I'll propose a couple of different ideas. One is to use discrete wavelets, the other is to use the geographer's concept of prominence.
Wavelets: Apply some sort of wavelet decomposition to your data. There are multiple choices, with Daubechies wavelets being the most widely used. You want the low frequency peaks. Zero out the high frequency wavelet elements, reconstruct your data, and look for local extrema.
Prominence: Those noisy peaks and valleys are of key interest to geographers. They want to know exactly which of a mountain's multiple little peaks is tallest, the exact location of the lowest point in the valley. Find the local minima and maxima in your data set. You should have a sequence of min/max/min/max/.../min. (You might want to add an arbitrary end points that are lower than your global minimum.) Consider a min/max/min sequence. Classify each of these triples per the difference between the max and the larger of the two minima. Make a reduced sequence that replaces the smallest of these triples with the smaller of the two minima. Iterate until you get down to a single min/max/min triple. In your example, you want the next layer down, the min/max/min/max/min sequence.
Note: I'm going to describe the algorithmic steps as if each pass were distinct. Obviously, in a specific implementation, you can combine steps where it makes sense for your application. For the purposes of my explanation, it makes the text a little more clear.
I'm going to make some assumptions about your problem:
The windows of interest (the signals that you are looking for) cover a fraction of the entire data space (i.e., it's not one long signal).
The windows have significant scope (i.e., they aren't one pixel wide on your picture).
The windows have a minimum peak of interest (i.e., even if the signal exceeds the background noise, the peak must have an additional signal excess of the background).
The windows will never overlap (i.e., each can be examined as a distinct sub-problem out of context of the rest of the signal).
Given those, you can first look through your data stream for a set of windows of interest. You can do this by making a first pass through the data: moving from left to right, look for noise threshold crossing points. If the signal was below the noise floor and exceeds it on the next sample, that's a candidate starting point for a window (vice versa for the candidate end point).
Now make a pass through your candidate windows: compare the scope and contents of each window with the values defined above. To use your picture as an example, the small peaks on the left of the image barely exceed the noise floor and do so for too short a time. However, the window in the center of the screen clearly has a wide time extent and a significant max value. Keep the windows that meet your minimum criteria, discard those that are trivial.
Now to examine your remaining windows in detail (remember, they can be treated individually). The peak is easy to find: pass through the window and keep the local max. With respect to the leading and trailing edges of the signal, you can see n the picture that you have a window that's slightly larger than the actual point at which the signal exceeds the noise floor. In this case, you can use a finite difference approximation to calculate the first derivative of the signal. You know that the leading edge will be somewhat to the left of the window on the chart: look for a point at which the first derivative exceeds a positive noise floor of its own (the slope turns upwards sharply). Do the same for the trailing edge (which will always be to the right of the window).
Result: a set of time windows, the leading and trailing edges of the signals and the peak that occured in that window.
It looks like the definition of a window is the range of x over which y is above the threshold. So use that to determine the size of the window. Within that, locate the largest value, thus finding the peak.
If that fails, then what additional criteria do you have for defining a region of interest? You may need to nail down your implicit assumptions to more than 'that looks like a peak to me'.