QR algorithm repeating eigenvalues - numerical-methods

Can QR algorithm find repeat eigenvalues (https://en.wikipedia.org/wiki/QR_algorithm) ? I.e. Does it support the case when not all N eigen value for real matrix N x N are distinct?
How extend QR algorithm to support finding complex eigenvalues?

In principle yes. It will work if the eigenvalues are really all eigenvalues, i.e., the algebraic and geometric multiplicity are the same.
If the multiple eigenvalue occurs in an Jordan-block of size s, then the unavoidable floating point error during the iteration will almost surely result in a star-shaped perturbation into an eigenvalue cluster with relative error of size mu^(1/s) where mu is the machine constant of the floating point data type.
The reason this happens is that on the irreducible invariant subspace corresponding to a Jordan block of size s the characteristic polynomial of the reduction of the linear operator to this subspace has is (λ-λ[j])^s. During the computation this gets perturbed to (λ-λ[j])^s+μq(λ) which in first approximation has roots close to λ[j]+μ^(1/s)*z[k], where z[k] denotes the s roots of 0=z^s+q(λ[k]). What the perturbation function q is is quite random, accumulated floating point truncation errors, and depends on details of the method.

Related

DM Script, why does the fourier transform of gaussian-kenel needs modulus

Recently I learn DM_Script for TEM image processing
I needed Gaussian blur process and I found one whose name is 'Gaussian Blur' in http://www.dmscripting.com/recent_updates.html
This code implements Gaussian blur algorithm by multiplying the fast fourier transform(FFT) of source image by the FFT of Gaussian-kernel image and finally doing inverse fourier transform of it.
Here is the part of the code,
// Carry out the convolution in Fourier space
compleximage fftkernelimg:=realFFT(kernelimg) (-> FFT of Gaussian-kernel image)
compleximage FFTSource:=realfft(warpimg) (-> FFT of source image)
compleximage FFTProduct:=FFTSource*fftkernelimg.modulus().sqrt()
realimage invFFT:=realIFFT(FFTProduct)
The point I want to ask is this
compleximage FFTProduct:=FFTSource*fftkernelimg.modulus().sqrt()
Why does the FFT of Gaussian-kernel need '.modulus().sqrt()' for the convolution?
It is related to the fact that the fourier transform of a Gaussian function becomes another Gaussian function?
Or It is related to a sort of limitation of discrete fourier transform?
Please answer me
Thanks
This is related to the general precision limitation of any floating point numeric computing. (see f.e. here, or more in depth here)
A rotational (real-valued) Gaussian of stand.dev. sigma should be transformed into a 100% real-values rotational Gaussioan of 1/sigma. However, doing this numerically will show you deviations: Just try the following:
number sigma = 30
number A0 = 1
realimage first := RealImage( "First", 8, 256, 256 )
first = A0 * exp( - (iradius**2/(2*sigma*sigma) ))
first.showimage()
complexImage second := FFT(first)
second.Showimage()
image nonZeroImaginaryMask = ( 0 != second.Imaginary() )
nonZeroImaginaryMask.Showimage()
nonZeroImaginaryMask.SetLimits(0,1)
When you then multiply these complex images (before back-transferring) you are introducing even more errors. By using modulus, one ensures that the forward transformed kernel is purely real and hence a better "damping" curve.
A better implementation of a FFT filtering code would actually create the FFT(Gaussian) directly with a std.dev of 1/sigma, as this is the analytically correct result. Doing a FFT of the kernel only makes sense if the kernel (or its FFT) is not analytically known.
In general: When implementing any "maths" into a program code, it can pay hugely to think it through with numerical computation limits in the back of your head. Reduce actual computation whenever possible (i.e. compute analytically and use the result instead of relying on brute force numerical computation) and try to "reshape" equations when possible, f.e. avoid large sums over many small numbers, be careful about checks against exact numeric values, try to avoid expressions which are very sensitive on small numerica errors etc.

Numerical integration of a discontinuous function in multiple dimensions

I have a function f(x) = 1/(x + a+ b*I*sign(x)) and I want to calculate the
integral of
dx dy dz f(x) f(y) f(z) f(x+y+z) f(x-y - z)
over the entire R^3 (b>0 and a,- b are of order unity). This is just a representative example -- in practice I have n<7 variables and 2n-1 instances of f(), n of them involving the n integration variables and n-1 of them involving some linear combintation of the integration variables. At this stage I'm only interested in a rough estimate with relative error of 1e-3 or so.
I have tried the following libraries :
Steven Johnson's cubature code: the hcubature algorithm works but is abysmally slow, taking hundreds of millions of integrand evaluations for even n=2.
HintLib: I tried adaptive integration with a Genz-Malik rule, the cubature routines, VEGAS and MISER with the Mersenne twister RNG. For n=3 only the first seems to be somewhat viable option but it again takes hundreds of millions of integrand evaluations for n=3 and relerr = 1e-2, which is not encouraging.
For the region of integration I have tried both approaches: Integrating over [-200, 200]^n (i.e. a region so large that it essentially captures most of the integral) and the substitution x = sinh(t) which seems to be a standard trick.
I do not have much experience with numerical analysis but presumably the difficulty lies in the discontinuities from the sign() term. For n=2 and f(x)f(y)f(x-y) there are discontinuities along x=0, y=0, x=y. These create a very sharp peak around the origin (with a different sign in the various quadrants) and sort of 'ridges' at x=0,y=0,x=y along which the integrand is large in absolute value and changes sign as you cross them. So at least I know which regions are important. I was thinking that maybe I could do Monte Carlo but somehow "tell" the algorithm in advance where to focus. But I'm not quite sure how to do that.
I would be very grateful if you had any advice on how to evaluate the integral with a reasonable amount of computing power or how to make my Monte Carlo "idea" work. I've been stuck on this for a while so any input would be welcome. Thanks in advance.
One thing you can do is to use a guiding function for your Monte Carlo integration: given an integral (am writing it in 1D for simplicity) of ∫ f(x) dx, write it as ∫ f(x)/g(x) g(x) dx, and use g(x) as a distribution from which you sample x.
Since g(x) is arbitrary, construct it such that (1) it has peaks where you expect them to be in f(x), and (2) such that you can sample x from g(x) (e.g., a gaussian, or 1/(1+x^2)).
Alternatively, you can use a Metropolis-type Markov chain MC. It will find the relevant regions of the integrand (almost) by itself.
Here are a couple of trivial examples.

why DCT transform is preferred over other transforms in video/image compression

I went through how DCT (discrete cosine transform) is used in image and video compression standards.
But why DCT only is preferred over other transforms like dft or dst?
Because cos(0) is 1, the first (0th) coefficient of DCT-II is the mean of the values being transformed. This makes the first coefficient of each 8x8 block represent the average tone of its constituent pixels, which is obviously a good start. Subsequent coefficients add increasing levels of detail, starting with sweeping gradients and continuing into increasingly fiddly patterns, and it just so happens that the first few coefficients capture most of the signal in photographic images.
Sin(0) is 0, so the DSTs start with an offset of 0.5 or 1, and the first coefficient is a gentle mound rather than a flat plain. That is unlikely to suit ordinary images, and the result is that DSTs require more coefficients than DCTs to encode most blocks.
The DCT just happens to suit. That is really all there is to it.
When performing image compression, our best bet is to perform the KLT or the Karhunen–Loève transform as it results in the least possible mean square error between the original and the compressed image. However, KLT is dependent on the input image, which makes the compression process impractical.
DCT is the closest approximation to the KL Transform. Mostly we are interested in low frequency signals so only even component is necessary hence its computationally feasible to compute only DCT.
Also, the use of cosines rather than sine functions is critical for compression as fewer cosine functions are needed to approximate a typical signal (See Douglas Bagnall's answer for further explanation).
Another advantage of using cosines is the lack of discontinuities. In DFT, since the signal is represented periodically, when truncating representation coefficients, the signal will tend to "lose its form". In DCT, however, due to the continuous periodic structure, the signal can withstand relatively more coefficient truncation but still keep the desired shape.
The DCT of a image macroblock where the top and bottom and/or the left and right edges don't match will have less energy in the higher frequency coefficients than a DFT. Thus allowing greater opportunities for these high coefficients to be removed, more coarsely quantized or compressed, without creating more visible macroblock boundary artifacts.
DCT is preferred over DFT (Discrete Fourier Transformation) and KLT (Karhunen-Loeve Transformation)
1. Fast algorithm
2. Good energy compaction
3. Only real coefficients

How to represent stereo audio data for FFT

How should stereo (2 channel) audio data be represented for FFT? Do you
A. Take the average of the two channels and assign it to the real component of a number and leave the imaginary component 0.
B. Assign one channel to the real component and the other channel to the imag component.
Is there a reason to do one or the other? I searched the web but could not find any definite answers on this.
I'm doing some simple spectrum analysis and, not knowing any better, used option A). This gave me an unexpected result, whereas option B) went as expected. Here are some more details:
I have a WAV file of a piano "middle-C". By definition, middle-C is 260Hz, so I would expect the peak frequency to be at 260Hz and smaller peaks at harmonics. I confirmed this by viewing the spectrum via an audio editing software (Sound Forge). But when I took the FFT myself, with option A), the peak was at 520Hz. With option B), the peak was at 260Hz.
Am I missing something? The explanation that I came up with so far is that representing stereo data using a real and imag component implies that the two channels are independent, which, I suppose they're not, and hence the mess-up.
I don't think you're taking the average correctly. :-)
C. Process each channel separately, assigning the amplitude to the real component and leaving the imaginary component as 0.
Option B does not make sense. Option A, which amounts to convert the signal to mono, is OK (if you are interested in a global spectrum).
Your problem (double freq) is surely related to some misunderstanding in the use of your FFT routines.
Once you take the FFT you need to get the Magnitude of the complex frequency spectrum. To get the magnitude you take the absolute of the complex spectrum |X(w)|. If you want to look at the power spectrum you square the magnitude spectrum, |X(w)|^2.
In terms of your frequency shift I think it has to do with you setting the imaginary parts to zero.
If you imagine the complex Frequency spectrum as a series of complex vectors or position vectors in a cartesian space. If you took one discrete frequency bin X(w), there would be one real component representing its direction in the real axis (x -direction), and one imaginary component in the in the imaginary axis (y - direction). There are four important values about this discrete frequency, 1. real value, 2. imaginary value, 3. Magnitude and, 4. phase. If you just take the real value and set imaginary to 0, you are setting Magnitude = real and phase = 0deg or 90deg. You have hence forth modified the resulting spectrum, and applied a bias to every frequency bin. Take a look at the wiki on Magnitude of a vector, also called the Euclidean norm of a vector to brush up on your understanding. Leonbloy was correct, but I hope this was more informative.
Think of the FFT as a way to get information from a single signal. What you are asking is what is the best way to display data from two signals. My answer would be to treat each independently, and display an FFT for each.
If you want a really fast streaming FFT you can read about an algorithm I wrote here: www.depthcharged.us/?p=176

Invert 4x4 matrix - Numerical most stable solution needed

I want to invert a 4x4 matrix. My numbers are stored in fixed-point format (1.15.16 to be exact).
With floating-point arithmetic I usually just build the adjoint matrix and divide by the determinant (e.g. brute force the solution). That worked for me so far, but when dealing with fixed point numbers I get an unacceptable precision loss due to all of the multiplications used.
Note: In fixed point arithmetic I always throw away some of the least significant bits of immediate results.
So - What's the most numerical stable way to invert a matrix? I don't mind much about the performance, but simply going to floating-point would be to slow on my target architecture.
Meta-answer: Is it really a general 4x4 matrix? If your matrix has a special form, then there are direct formulas for inverting that would be fast and keep your operation count down.
For example, if it's a standard homogenous coordinate transform from graphics, like:
[ux vx wx tx]
[uy vy wy ty]
[uz vz wz tz]
[ 0 0 0 1]
(assuming a composition of rotation, scale, translation matrices)
then there's an easily-derivable direct formula, which is
[ux uy uz -dot(u,t)]
[vx vy vz -dot(v,t)]
[wx wy wz -dot(w,t)]
[ 0 0 0 1 ]
(ASCII matrices stolen from the linked page.)
You probably can't beat that for loss of precision in fixed point.
If your matrix comes from some domain where you know it has more structure, then there's likely to be an easy answer.
I think the answer to this depends on the exact form of the matrix. A standard decomposition method (LU, QR, Cholesky etc.) with pivoting (an essential) is fairly good on fixed point, especially for a small 4x4 matrix. See the book 'Numerical Recipes' by Press et al. for a description of these methods.
This paper gives some useful algorithms, but is behind a paywall unfortunately. They recommend a (pivoted) Cholesky decomposition with some additional features too complicated to list here.
I'd like to second the question Jason S raised: are you certain that you need to invert your matrix? This is almost never necessary. Not only that, it is often a bad idea. If you need to solve Ax = b, it is more numerically stable to solve the system directly than to multiply b by A inverse.
Even if you have to solve Ax = b over and over for many values of b, it's still not a good idea to invert A. You can factor A (say LU factorization or Cholesky factorization) and save the factors so you're not redoing that work every time, but you'd still solve the system each time using the factorization.
You might consider doubling to 1.31 before doing your normal algorithm. It'll double the number of multiplications, but you're doing a matrix invert and anything you do is going to be pretty tied to the multiplier in your processor.
For anyone interested in finding the equations for a 4x4 invert, you can use a symbolic math package to resolve them for you. The TI-89 will do it even, although it'll take several minutes.
If you give us an idea of what the matrix invert does for you, and how it fits in with the rest of your processing we might be able to suggest alternatives.
-Adam
Let me ask a different question: do you definitely need to invert the matrix (call it M), or do you need to use the matrix inverse to solve other equations? (e.g. Mx = b for known M, b) Often there are other ways to do this w/o explicitly needing to calculate the inverse. Or if the matrix M is a function of time & it changes slowly then you could calculate the full inverse once, & there are iterative ways to update it.
If the matrix represents an affine transformation (many times this is the case with 4x4 matrices so long as you don't introduce a scaling component) the inverse is simply the transpose of the upper 3x3 rotation part with the last column negated. Obviously if you require a generalized solution then looking into Gaussian elimination is probably the easiest.