A simple Convolutional neural network code - deep-learning

I am interested in convolutional neural networks (CNNs) as a example of computationally extensive application that is suitable for acceleration using reconfigurable hardware (i.e. lets say FPGA)
In order to do that I need to examine a simple CNN code that I can use to understand how they are implemented, how are the computations in each layer taking place, how the output of each layer is being fed to the input of the next one. I am familiar with the theoretical part (http://cs231n.github.io/convolutional-networks/)
But, I am not interested in training the CNN, I want a complete, self contained CNN code that is pre-trained and all the weights and biases values are known.
I know that there are plenty of CNN libraries, i.e. Caffe, but the problem is that there is no trivial example code that is self contained. even for the simplest Caffe example "cpp_classification" many libraries are invoked, the architecture of the CNN is expressed as .prototxt file, other types of inputs such as .caffemodel and .binaryproto are involved. openCV2 libraries is invoked too. there are layers and layers of abstraction and different libraries working together to produce the classification outcome.
I know that those abstractions are needed to generate a "useable" CNN implementation, but for a hardware person who needs a bare-bone code to study, this is too much of "un-related work".
My question is: Can anyone guide me into a simple and self-contained CNN implementation that I can start with?

I can recommend tiny-cnn. It is simple, lightweight (e.g. header-only) and CPU only, while providing several layers frequently used within the literature (as for example pooling layers, dropout layers or local response normalization layer). This means, that you can easily explore an efficient implementation of these layers in C++ without requiring knowledge of CUDA and digging through the I/O and framework code as required by framework such as Caffe. The implementation lacks some comments, but the code is still easy to read and understand.
The provided MNIST example is quite easy to use (tried it myself some time ago) and trains efficiently. After training and testing, the weights are written to file. Then you have a simple pre-trained model from which you can start, see the provided examples/mnist/test.cpp and examples/mnist/train.cpp. It can easily be loaded for testing (or recognizing digits) such that you can debug the code while executing a learned model.
If you want to inspect a more complicated network, have a look at the Cifar-10 Example.

This is the simplest implementation I have seen: DNN McCaffrey
Also, the source code for this by Karpathy looks pretty straightforward.

Related

Keras Applications (Transfer Learning)

I am a student and currently studying deep learning by myself. Here I would like to ask for clarification regarding the transfer learning.
For example MobileNetv2 (https://keras.io/api/applications/mobilenet/#mobilenetv2-function), if the weights parameter is set to None, then I am not doing transfer learning as the weights are random initialized. If I would like to do transfer learning, then I should set the weights parameter to imagenet. Is this concept correct?
Clarification and explanation regarding deep learning
Yes, when you initialize the weights with random values, you are just using the architecture and training the model from scratch. The goal of transfer learning is to use the previously gained knowledge by another trained model to get better results or to use less computational resources.
There are different ways to use transfer learning:
You can freeze the learned weights of the base model and replace the last layer of the model base on your problem and just train the last layer
You can start with the learned weights and fine-tune them (let them change in the learning process). Many people do that because sometimes it makes the training faster and gives better results because the weights already contain so much information.
You can use the first layers to extract basic features like colors, edges, circles... and add your desired layers after them. In this way, you can use your resources to learn high-level features.
There are more cases, but I hope it could give you an idea.

What are backend weights in deep learning models (yolo)?

pretty new to deep learning, but couldn't seem to find/figure out what are backend weights such as
full_yolo_backend.h5
squeezenet_backend.h5
From what I have found and experimented, these backend weights have fundamentally different model architectures such as
yolov2 model has 40+ layers but the backend only 20+ layers (?)
you can build on top of the backend model with your own networks (?)
using backend models tend to yield poorer results (?)
I was hoping to seek some explanation on backend weights vs actual models for learning purposes. Thank you so much!
I'm note sure which implementation you are using but in many applications, you can consider a deep model as a feature extractor whose output is more or less task-agnostic, followed by a number of task-specific heads.
The choice of backend depends on your specific constraints in terms of tradeoff between accuracy and computational complexity. Examples of classical but time-consuming choices for backends are resnet-101, resnet-50 or VGG that can be coupled with FPN (feature pyramid networks) to yield multiscale features. However, if speed is your main concern then you can use smaller backends such as different MobileNet architectures or even the vanilla networks such as the ones used in the original Yolov1/v2 papers (tinyYolo is an extreme case).
Once you have chosen your backend (you can use a pretrained one), you can load its weights (that is what your *h5 files are). On top of that, you will add a small head that will carry the tasks that you need: this can be classification, bbox regression, or like in MaskRCNN forground/background segmentation. For Yolov2, you can just add very few, for example 3 convolutional layers (with non-linearities of course) that will output a tensor of size
BxC1xC2xAxP
#B==batch size
#C1==number vertical of cells
#C2==number of horizontal cells
#C3==number of anchors
#C4==number of parameters (i.e. bbx parameters, class prediction, confidence)
Then, you can just save/load the weights of this head separately. When you are happy with your results though, training jointly (end-to-end) will usually give you a small boost in accuracy.
Finally, to come back to your last questions, I assume that you are getting poor results with the backends because you are only loading backend weights but not the weights of the heads. Another possibility is that you are using a head trained with a backends X but that you are switching the backend to Y. In that case since the head expects different features, it's natural to see a drop in performance.

How to input audio data into deep learning algorithm?

I'm very new in deep learning, and I'm targeting to use GAN (Generative Adversarial Network) to recognize emotional speech. I've only known images being as inputs to most deep learning algorithms, such as GAN. but I'm curious as to how audio data can be an input into it, besides of using images of the spectrograms as the input. also, i'd appreciate it if you can explain it in laymen terms.
Audio data can be be represented in form of numpy arrays but before moving to that you must understand what audio really is. If you give a thought on what an audio looks like, it is nothing but a wave like format of data, where the amplitude of audio change with respect to time.
Assuming that our audio is represented in time domain, we can extract the values at every half-second(arbitrary). This is called sampling rate.
Converting the data into frequency domain can reduce the amount of computation requires as the sampling rate is less.
Now, let's load the data. We'll use a library called librosa , which can be installed using pip.
data, sampling_rate = librosa.load('audio.wav')
Now, you have both the data and the sampling rate. We can plot the waveform now.
librosa.display.waveplot(data, sr=sampling_rate)
Now, you have the audio data in form of numpy array. You can now study the features of the data and extract the ones you find interesting to train your models.
Further to Ayush’s discussion, for information on the challenges and work arounds of dealing with large amounts of data at different time scales in audio data I suggest this post on WaveNet: https://deepmind.com/blog/article/wavenet-generative-model-raw-audio
After that it sounds like you want to do classification. In that case a GAN on it’s own is not suitable. If you have plenty of data you could use a straight LSTM (or another type of RNN) which is designed to model time series, or you can take set sized chunks of input and use a 1-d CNN (similar to WaveNet). If you have lots of unlabelled data from the same or similar domain and limited training data you could use a GAN to learn to generate new samples, then use the discriminator from the GAN as pre-trained weights for a CNN classifier.
Since you are trying to perform Speech Emotion Recognition (SER) using deep learning, you can go for a recurrent architecture (LSTM or GRU) or a combination of CNN and recurrent network architecture (CRNN) instead of GANs since GANs are complicated and difficult to train.
In a CRNN, the CNN layers will extract features of varying details and complexity, whereas the recurrent layers will take care of the temporal dependencies. You can then finally use a fully connected layer for regression or classification output, depending on whether your output label is discrete (for categorical emotions like angry, sad, neutral etc) or continuous (arousal and valence space).
Regarding the choice of input, you can use either a spectrogram input (2D) or raw speech signal (1D) as input. For spectrogram input, you have to use a 2D CNN whereas for a raw speech signal you can use a 1D CNN. Mel scale spectrograms are usually preferred over linear spectrograms since our ears hear frequencies in log scale and not linearly.
I have used a CRNN architecture to estimate the level of verbal conflict arising from conversational speech. Even though it is not SER, it is a very similar task.
You can find more details in the paper
http://www.eecs.qmul.ac.uk/~andrea/papers/2019_SPL_ConflictNET_Rajan_Brutti_Cavallaro.pdf
Also, check my github code for the same paper
https://github.com/smartcameras/ConflictNET
and a SER paper whose code I reproduced in Python
https://github.com/vandana-rajan/1D-Speech-Emotion-Recognition
And finally as Ayush mentioned, Librosa is one of the best Python libraries for audio processing. You have functions to create spectrograms in Librosa.

Overview for Deep Learning Networks

I am fairly new to Deep Learning and get quite overwhelmed by the many different Nets and their field of application. Thus, I want to know if there is some kind of overview which kind of different networks exist, what there key-features are and what kind of purpose they have.
For example I know abut LeNet, ConvNet, AlexNet - and somehow they are the same but still differ?
There are basically two types of neural networks, supervised and unsupervised learning. Both need a training set to "learn". Imagine training set as a massive book where you can learn specific information. In supervised learning, the book is supplied with answer key but without the solution manual, in contrast, unsupervised learning comes without answer key or solution manual. But the goal is the same, which is that to find patterns between the questions and answers (supervised learning) and questions (unsupervised learning).
Now we have differentiate between those two, we can go into the models. Let's discuss about supervised learning, which basically has 3 main models:
artificial neural network (ANN)
convolutional neural network (CNN)
recurrent neural network (RNN)
ANN is the simplest of all three. I believe that you have understand it, so we can move forward to CNN.
Basically in CNN all you have to do is to convolve our input with feature detectors. Feature detectors are matrices which have the dimension of (row,column,depth(number of feature detectors). The goal of convolving our input is to extract informations related to spatial data. Let's say you want to distinguish between cats and dogs. Cats have whiskers but dogs does not. Cats also have different eyes than dogs and so on. But the downside is, the more convolution layers will result in slower computation time. To mitigate that, we do some kind of processing called pooling or downsampling. Basically, this reduce the size of feature detectors while minimizing lost features or information. Then the next step would be flattening or squashing all those 3d matrix into (n,1) dimension so you can input it into ANN. Then the next step is self explanatory, which is normal ANN. Because CNN is inherently able to detect certain features, it mostly(maybe always) used for classification, for example image classification, time series classification, or maybe even video classification. For a crash course in CNN, check out this video by Siraj Raval. He's my favourite youtuber of all time!
Arguably the most sophisticated of all three, RNN is bestly described as neural networks that have "memory" by introducing "loops" within them which allow information to persist. Why is this important? As you are reading this, your brain use previous memory to comprehend all of this information. You don't seem to rethink everything from scratch again and this is what traditional neural networks do, which is to forget everything and re-learn again. But native RNN aren't effective so when people talk about RNN they mostly refer to LSTM which stands for Long Short-Term Memory. If that seems confusing to you, Cristopher Olah will give you in depth explanation in a very simple way. I advice you to check out his link for complete understanding about how RNN, especially LSTM variant
As for unsupervised learning, I'm so sorry that I haven't got the time to learn them, so this is the best I can do. Good luck and have fun!
They are the same type of Networks. Convolutional Neural Networks. The problem with the overview is that as soon as you post something it is already outdated. Most of the networks you describe are already old, even though they are only a few years old.
Nevertheless you can take a look at the networks supplied by caffe (https://github.com/BVLC/caffe/tree/master/models).
In my personal view the most important concepts in deep Learning are recurrent networks (https://keras.io/layers/recurrent/), residual connections, inception blocks (see https://arxiv.org/abs/1602.07261). The rest are largely theoretical concepts, which would not fit in a stack overflow answer.

How to train an end-to-end deep neural network (FCN) for MatConvNet?

MatConvNet support convolution transpose layer ('convt'), but I can not find an example in their source code nor in their documents. Are there any guidence?
I noticed there is an example given by https://github.com/vlfeat/matconvnet-fcn,
but it involved many irrelated things. I hope the example to be as simple as possible.