VBA function to calculate Great Circle distances given lat/lon values - ms-access

I am trying to declare multiple variables in my custom function. Here is what I have so far:
Public Function myDistance(w As Double, x As Double, y As Double, z As Double) As Double
myDistance = Excel.WorksheetFunction.Acos(Cos(radians(90 - w)) * Cos(radians(90 - y))) + Sin(radians(90 - w) * Sin(radians(90 - x)) * Cos(radians(y - z))) * 3958.756
End Function
When I attempt to run the function in my query I get the following error:
Compile Error
Sub or Function Not Defined
My suspicion is the syntax when declaring the variables is incorrect, but I am unsure of how to remedy this. I ran a more simple version of this function without any problem. See below:
Public Function myDistance(x as double) as double
myDistance = Excel.WorksheetFunction.Acos(x)
End Function
The function itself will be used to calculate the distance between two places using latitude and longitude. Do you know how to correct the issue I am having?
Thank you.

This is the function that I use to calculate Great Circle distances, courtesy of
http://www.cpearson.com/excel/LatLong.aspx
Option Compare Database
Option Explicit
' ref: http://www.cpearson.com/excel/LatLong.aspx
Private Const C_RADIUS_EARTH_KM As Double = 6370.97327862
Private Const C_RADIUS_EARTH_MI As Double = 3958.73926185
Private Const C_PI As Double = 3.14159265358979
Function GreatCircleDistance(Latitude1 As Double, Longitude1 As Double, _
Latitude2 As Double, Longitude2 As Double, _
ValuesAsDecimalDegrees As Boolean, _
ResultAsMiles As Boolean) As Double
Dim Lat1 As Double
Dim Lat2 As Double
Dim Long1 As Double
Dim Long2 As Double
Dim X As Long
Dim Delta As Double
If ValuesAsDecimalDegrees = True Then
X = 1
Else
X = 24
End If
' convert to decimal degrees
Lat1 = Latitude1 * X
Long1 = Longitude1 * X
Lat2 = Latitude2 * X
Long2 = Longitude2 * X
' convert to radians: radians = (degrees/180) * PI
Lat1 = (Lat1 / 180) * C_PI
Lat2 = (Lat2 / 180) * C_PI
Long1 = (Long1 / 180) * C_PI
Long2 = (Long2 / 180) * C_PI
' get the central spherical angle
Delta = ((2 * ArcSin(Sqr((Sin((Lat1 - Lat2) / 2) ^ 2) + _
Cos(Lat1) * Cos(Lat2) * (Sin((Long1 - Long2) / 2) ^ 2)))))
If ResultAsMiles = True Then
GreatCircleDistance = Delta * C_RADIUS_EARTH_MI
Else
GreatCircleDistance = Delta * C_RADIUS_EARTH_KM
End If
End Function
Function ArcSin(X As Double) As Double
' VBA doesn't have an ArcSin function. Improvise.
ArcSin = Atn(X / Sqr(-X * X + 1))
End Function

Related

why the distance is different using Cartesian coordinates than latitude and longitude?

I have a latitude and longitude of some point I used the following function to fin distance between points. Then I used the next function to convert latitude and longitude to cartesian coordinates. when I use the following formula to find distance of point with cartesian coordinates, the result is different than the first method. why?
(x^2+y^2+z^2)^0.5
def distance(lat2,lat1,lon2,lon1):
distance=[]
speed=[]
accelerate=[]
radius = 6371 # km
dlat = math.radians(lat2-lat1)
dlon = math.radians(lon2-lon1)
a = math.sin(dlat/2) * math.sin(dlat/2) + math.cos(math.radians(lat1)) \
* math.cos(math.radians(lat2)) * math.sin(dlon/2) * math.sin(dlon/2)
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))
d = radius * c
distance.append(d)
for i in range(len(distance)-1):
speed.append((distance[i])/0.25)
for i in range(len(speed)-1):
accelerate.append((speed[i+1]-speed[i])/0.25)
return distance,speed,accelerate
def X_Y_Z(latitude,longitude):
R=6371
X=[]
Y=[]
Z=[]
for lat,lon in zip(latitude,longitude):
x = R * math.cos(lat) * math.cos(lon)
y = R * math.cos(lat) * math.sin(lon)
z = R *math.sin(lat)
X.append(x)
Y.append(y)
Z.append(z)
return X,Y,Z
for example the distance between (40.714531 ,-73.725607) and (40.714527 , -73.725591) is 0.001377. But cartesian coordinates give me different distance:
(642.430295 , -6287.620268 , 801.720448) and (642.527042 -6287.607109 801.746119)

Apache POI rate formula not working if data is big

Rate Formula is not working as expected for big values...
RATE(85.77534246575343, -1589.0, -18664.0, 5855586.0) in physical file it returns 0.05819488005
if the same formula we tried to set through POI returns 0.009056339275922086..
Even we tried to save the excel and open same 0.009056339275922086 is returned..
Code used to set in POI :
XSSFWorkbook workbook = new XSSFWorkbook();
XSSFRow row = sheet.createRow(1);
XSSFCell cell = row.createCell(1);
cell.setCellType(CellType.NUMERIC);
cell.setCellFormula("RATE(85.77534246575343, -1589.0, -18664.0, 5855586.0)");
FormulaEvaluator evaluator = workbook.getCreationHelper().createFormulaEvaluator();
evaluator.evaluateInCell(cell);
cell.getNumericCellValue();
The Rate function of apache poi states that it "// find root by Newton secant method". That's nonsense since Secant method is only a Quasi-Newton method. And "If the initial values are not close enough to the root, then there is no guarantee that the secant method converges.".
So the default guess of 0.1 seems not "close enough" and so if we are using cell.setCellFormula("RATE(85.77534246575343, -1589.0, -18664.0, 5855586.0, 0, 0.06)"); - note the explicit setting of type and guess properties and having the guess property "close enough" to the result of 0.05819488005- then the formula evaluates properly.
If apache poi really would use Newton's method, then the function would evaluate properly also using the default guess of 0.1. The disadvantage of Newton's method is that it requires the evaluation of both f and its derivative f′ at every step. So it may be slower than the Secant method in some cases.
Example:
import java.io.FileOutputStream;
import org.apache.poi.ss.usermodel.*;
import org.apache.poi.xssf.usermodel.XSSFWorkbook;
import org.apache.poi.xssf.usermodel.XSSFSheet;
public class ExcelRATEFunction {
private static double calculateRateNewton(double nper, double pmt, double pv, double fv, double type, double guess) {
int FINANCIAL_MAX_ITERATIONS = 20;
double FINANCIAL_PRECISION = 0.0000001;
double y, y1, xN = 0, f = 0, i = 0;
double rate = guess;
//find root by Newtons method (https://en.wikipedia.org/wiki/Newton%27s_method), not secant method!
//Formula see: https://wiki.openoffice.org/wiki/Documentation/How_Tos/Calc:_Derivation_of_Financial_Formulas#PV.2C_FV.2C_PMT.2C_NPER.2C_RATE
f = Math.pow(1 + rate, nper);
y = pv * f + pmt * ((f - 1) / rate) * (1 + rate * type) + fv;
//first derivative:
//y1 = (pmt * nper * type * Math.pow(rate,2) * f - pmt * f - pmt * rate * f + pmt * nper * rate * f + pmt * rate + pmt + nper * pv * Math.pow(rate,2) * f) / (Math.pow(rate,2) * (rate+1));
y1 = (f * ((pmt * nper * type + nper * pv) * Math.pow(rate,2) + (pmt * nper - pmt) * rate - pmt) + pmt * rate + pmt) / (Math.pow(rate,3) + Math.pow(rate,2));
xN = rate - y/y1;
while ((Math.abs(rate - xN) > FINANCIAL_PRECISION) && (i < FINANCIAL_MAX_ITERATIONS)) {
rate = xN;
f = Math.pow(1 + rate, nper);
y = pv * f + pmt * ((f - 1) / rate) * (1 + rate * type) + fv;
//first derivative:
//y1 = (pmt * nper * type * Math.pow(rate,2) * f - pmt * f - pmt * rate * f + pmt * nper * rate * f + pmt * rate + pmt + nper * pv * Math.pow(rate,2) * f) / (Math.pow(rate,2) * (rate+1));
y1 = (f * ((pmt * nper * type + nper * pv) * Math.pow(rate,2) + (pmt * nper - pmt) * rate - pmt) + pmt * rate + pmt) / (Math.pow(rate,3) + Math.pow(rate,2));
xN = rate - y/y1;
++i;
System.out.println(rate+", "+xN+", "+y+", "+y1);
}
rate = xN;
return rate;
}
public static void main(String[] args) throws Exception {
Workbook workbook = new XSSFWorkbook();
Sheet sheet = workbook.createSheet();
Row row = sheet.createRow(1);
Cell cell = row.createCell(1);
cell.setCellFormula("RATE(85.77534246575343, -1589.0, -18664.0, 5855586.0, 0, 0.06)");
FormulaEvaluator evaluator = workbook.getCreationHelper().createFormulaEvaluator();
CellType celltype = evaluator.evaluateFormulaCellEnum(cell);
double value = 0.0;
if (celltype == CellType.NUMERIC) {
value = cell.getNumericCellValue();
System.out.println(value);
}
workbook.setForceFormulaRecalculation(true);
value = calculateRateNewton(85.77534246575343, -1589.0, -18664.0, 5855586.0, 0, 0.1);
System.out.println(value);
workbook.write(new FileOutputStream("ExcelRATEFunction.xlsx"));
workbook.close();
}
}

Solving for lat or lon in Halversine?

I need a function that returns a longitude value given a lat/lon coordinate, a distance in miles, and an intersecting latitude. To do that I need to use Halversine, like discussed here:
https://stackoverflow.com/a/7179026/78202. I realize that there will be two longitudes that intersect a given latitude a given distance from another ordered pair, I'd just like to get the point where I have a function that correctly returns one of them and I'll decide how to break the tie then.
I casually solved Holversine for lon1, and here's what I have. This is partly a math question, partly a programming question - what is wrong with this? There's no syntax error, I'm just not getting what I expect (see below).
function toRad(Value) {
/** Converts numeric degrees to radians */
return Value * Math.PI / 180;
}
/** returns the longitude a certain number of miles from another point given a latitude. **/
function getLon(miles, lat1, lat2, lon2) {
// see http://www.movable-type.co.uk/scripts/latlong.html
//Radius of the earth in: 1.609344 miles, 6371 km | var R = (6371 / 1.609344);
var R = 3958.7558657440545; // Radius of earth in Miles
miles = (typeof miles === "undefined") ? 1.46628357399041 : miles;
lat1 = (typeof lat1 === "undefined") ? 42.34769 : lat1;
lat2 = (typeof lat2 === "undefined") ? 42.367137 : lat2;
lon2 = (typeof lon2 === "undefined") ? -71.124383 : lon2;
var dLat = toRad( lat2-lat1 );
var sinInsideN1 = Math.sin(dLat);
var sinInsideN2 = Math.sin(miles/2*R);
var n1 = Math.pow(sinInsideN1,2);
var n2 = Math.pow(sinInsideN2,2);
var d1 = Math.cos(lat1)*Math.cos(lat2);
var inArcsin = Math.sqrt((n2-n1)/d1);
var translation = inArcsin-Math.floor(inArcsin);
var ret = -(lat1+2*Math.asin(translation))
return ret; // should be 42.34769
}
I'm getting 42.242513701215, which forms a coordinate with 42.34769 that is 8.63065661614176 mi from (42.367137,-71.124383), not 1.46628357399041 mi as expected.
I found an C-implementation of Haversine here http://code.google.com/p/siklon/source/browse/trunk/source/Haversine.c?r=11, which I have then rewritten wrt lon1:
#include <math.h>
/*Earth Radius in Kilometers.*/
/* static const double R = 6372.797560856; */
/*Earth Radius in Miles.*/
static const double R = 3958.7558657440545;
/*Degree vs. Radian conservation variables*/
static const double DEG_TO_RAD = M_PI/180.0;
static const double RAD_TO_DEG = 180.0/M_PI;
double Haversine_Distance(double lat1,double lon1, double lat2, double lon2)
{
double dlon = (lon2 - lon1) * DEG_TO_RAD;
double dlat = (lat2 - lat1) * DEG_TO_RAD;
double a = pow(sin(dlat * 0.5),2) + cos(lat1*DEG_TO_RAD) * cos(lat2*DEG_TO_RAD) * pow(sin(dlon * 0.5),2);
double c = 2.0 * atan2(sqrt(a), sqrt(1-a));
return R * c;
}
double inverseHaversine_Distance_lon1(double lat1, double dist, double lat2, double lon2)
{
/* Rewrite Haversine_Distance wrt lon1: */
/* dist = R * c = R * 2.0 * atan2(sqrt(a), sqrt(1-a)) */
/* dist / R / 2.0 = atan2(sqrt(a), sqrt(1-a)) */
/* sqrt(a) = sin(dist / R / 2.0); sqrt(1-a) = cos(dist / R / 2.0) */
/* a = (sin(dist / R / 2.0))^2; 1 - a = (cos(dist / R / 2.0))^2 */
/* pow(sin(dlat * 0.5),2) + cos(lat1*DEG_TO_RAD) * cos(lat2*DEG_TO_RAD) * pow(sin(dlon * 0.5),2) = (sin(dist / R / 2.0))^2 */
/* cos(lat1*DEG_TO_RAD) * cos(lat2*DEG_TO_RAD) * pow(sin(dlon * 0.5),2) = (sin(dist / R / 2.0))^2 - pow(sin(dlat * 0.5),2) */
/* pow(sin(dlon * 0.5),2) = (pow(sin(dist / R / 2.0), 2) - pow(sin(dlat * 0.5), 2)) / (cos(lat1*DEG_TO_RAD) * cos(lat2*DEG_TO_RAD)) */
/* sin(dlon * 0.5) = sqrt((pow(sin(dist / R / 2.0), 2) - pow(sin(dlat * 0.5), 2)) / (cos(lat1*DEG_TO_RAD) * cos(lat2*DEG_TO_RAD))) */
/* dlon = (lon2 - lon1) * DEG_TO_RAD = asin(sqrt((pow(sin(dist / R / 2.0), 2) - pow(sin(dlat * 0.5), 2)) / (cos(lat1*DEG_TO_RAD) * cos(lat2*DEG_TO_RAD)))) * 2.0 */
/* lon2 - lon1 = asin(sqrt((pow(sin(dist / R / 2.0), 2) - pow(sin(dlat * 0.5), 2)) / (cos(lat1*DEG_TO_RAD) * cos(lat2*DEG_TO_RAD)))) * 2.0 / DEG_TO_RAD*/
/* lon1 = lon2 - asin(sqrt((pow(sin(dist / R / 2.0), 2) - pow(sin(dlat * 0.5), 2)) / (cos(lat1*DEG_TO_RAD) * cos(lat2*DEG_TO_RAD)))) * 2.0 / DEG_TO_RAD*/
double dlat = (lat2 - lat1) * DEG_TO_RAD;
return lon2 - asin(sqrt((pow(sin(dist / R / 2.0), 2) - pow(sin(dlat * 0.5), 2)) / (cos(lat1*DEG_TO_RAD) * cos(lat2*DEG_TO_RAD)))) * 2.0 * RAD_TO_DEG;
}
int main()
{
double lat1 = 42.34769;
double dist = 1.46628357399041;
double lat2 = 42.367137;
double lon2 = -71.124383;
double lon1 = inverseHaversine_Distance_lon1(lat1, dist, lat2, lon2);
printf("lon1 %f\n", lon1);
printf("dist %f\n", Haversine_Distance(lat1, lon1, lat2, lon2));
}
The result:
gcc inverse_haversine.c -lm
./a.out
lon1 -71.135880
dist 1.466284
It may be possible to reduce the expression...
At least lat1, lat2 and lon2 has to be converted into radians before calling the trigonometric functions! But maybe there are more problems... :)
Example: Using the simple version I got this code i C:
#include <math.h>
#define METERS_PER_DEGREE_EQUATOR 111319.5
#define MILES_PER_DEGREE_EQUATOR (METERS_PER_DEGREE_EQUATOR / 1000.0 / 1.609344)
/* Select preferred unit: */
#define UNITS_PER_DEGREE_EQUATOR MILES_PER_DEGREE_EQUATOR
double horDist(double lat1, double lon1, double lat2, double lon2)
{
/* From "Note on conversion from decimal degrees to meters"
* (http://southport.jpl.nasa.gov/GRFM/cdrom/2a/DOCS/HTML/GEOLOC/METERS.HTM)
* NOTE: BELOW IS ONLY PRECISE IF THE TWO LATITUDES ARE NOT TOO DISTANT! */
double latDelta = UNITS_PER_DEGREE_EQUATOR * (lat1 - lat2);
double lonDelta = UNITS_PER_DEGREE_EQUATOR * (lon1 - lon2) * cos(lat1 * M_PI / 180);
return sqrt(latDelta * latDelta + lonDelta * lonDelta);
}
double invHorDist_lon1(double lat1, double dist, double lat2, double lon2)
{
/* Rewrite horDist wrt lon1: */
/* (dist * dist) = (latDelta * latDelta) + (lonDelta * lonDelta); */
/* (dist * dist) - (latDelta * latDelta) = (lonDelta * lonDelta); */
/* sqrt((dist * dist) - (latDelta * latDelta)) = lonDelta = UNITS_PER_DEGREE_EQUATOR * (lon1 - lon2) * cos(lat1 * M_PI / 180); */
/* sqrt((dist * dist) - (latDelta * latDelta)) / UNITS_PER_DEGREE_EQUATOR / cos(lat1 * M_PI / 180) = (lon1 - lon2); */
double latDelta = UNITS_PER_DEGREE_EQUATOR * (lat1 - lat2);
return sqrt((dist * dist) - (latDelta * latDelta)) / UNITS_PER_DEGREE_EQUATOR / cos(lat1 * M_PI / 180) + lon2;
}
int main()
{
double lon1 = invHorDist_lon1(42.34769, 1.46628357399041, 42.367137, -71.124383);
printf("lon1 %f\n", lon1);
printf("dist %f\n", horDist(42.34769, lon1, 42.367137, -71.124383));
}
And the result is:
gcc haversine.c -lm
./a.out
lon1 -71.112968
dist 1.466284
But again this simple version does not fit if the two latitudes are too distant. But try rewrite Haversine again and convert to radians whenever you use trigonometric functions.

Shortest distance between a point and a line segment

I need a basic function to find the shortest distance between a point and a line segment. Feel free to write the solution in any language you want; I can translate it into what I'm using (Javascript).
EDIT: My line segment is defined by two endpoints. So my line segment AB is defined by the two points A (x1,y1) and B (x2,y2). I'm trying to find the distance between this line segment and a point C (x3,y3). My geometry skills are rusty, so the examples I've seen are confusing, I'm sorry to admit.
Eli, the code you've settled on is incorrect. A point near the line on which the segment lies but far off one end of the segment would be incorrectly judged near the segment. Update: The incorrect answer mentioned is no longer the accepted one.
Here's some correct code, in C++. It presumes a class 2D-vector class vec2 {float x,y;}, essentially, with operators to add, subract, scale, etc, and a distance and dot product function (i.e. x1 x2 + y1 y2).
float minimum_distance(vec2 v, vec2 w, vec2 p) {
// Return minimum distance between line segment vw and point p
const float l2 = length_squared(v, w); // i.e. |w-v|^2 - avoid a sqrt
if (l2 == 0.0) return distance(p, v); // v == w case
// Consider the line extending the segment, parameterized as v + t (w - v).
// We find projection of point p onto the line.
// It falls where t = [(p-v) . (w-v)] / |w-v|^2
// We clamp t from [0,1] to handle points outside the segment vw.
const float t = max(0, min(1, dot(p - v, w - v) / l2));
const vec2 projection = v + t * (w - v); // Projection falls on the segment
return distance(p, projection);
}
EDIT: I needed a Javascript implementation, so here it is, with no dependencies (or comments, but it's a direct port of the above). Points are represented as objects with x and y attributes.
function sqr(x) { return x * x }
function dist2(v, w) { return sqr(v.x - w.x) + sqr(v.y - w.y) }
function distToSegmentSquared(p, v, w) {
var l2 = dist2(v, w);
if (l2 == 0) return dist2(p, v);
var t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
t = Math.max(0, Math.min(1, t));
return dist2(p, { x: v.x + t * (w.x - v.x),
y: v.y + t * (w.y - v.y) });
}
function distToSegment(p, v, w) { return Math.sqrt(distToSegmentSquared(p, v, w)); }
EDIT 2: I needed a Java version, but more important, I needed it in 3d instead of 2d.
float dist_to_segment_squared(float px, float py, float pz, float lx1, float ly1, float lz1, float lx2, float ly2, float lz2) {
float line_dist = dist_sq(lx1, ly1, lz1, lx2, ly2, lz2);
if (line_dist == 0) return dist_sq(px, py, pz, lx1, ly1, lz1);
float t = ((px - lx1) * (lx2 - lx1) + (py - ly1) * (ly2 - ly1) + (pz - lz1) * (lz2 - lz1)) / line_dist;
t = constrain(t, 0, 1);
return dist_sq(px, py, pz, lx1 + t * (lx2 - lx1), ly1 + t * (ly2 - ly1), lz1 + t * (lz2 - lz1));
}
Here, in the function parameters, <px,py,pz> is the point in question and the line segment has the endpoints <lx1,ly1,lz1> and <lx2,ly2,lz2>. The function dist_sq (which is assumed to exist) finds the square of the distance between two points.
Here is the simplest complete code in Javascript.
x, y is your target point and x1, y1 to x2, y2 is your line segment.
UPDATED: fix for 0 length line problem from comments.
function pDistance(x, y, x1, y1, x2, y2) {
var A = x - x1;
var B = y - y1;
var C = x2 - x1;
var D = y2 - y1;
var dot = A * C + B * D;
var len_sq = C * C + D * D;
var param = -1;
if (len_sq != 0) //in case of 0 length line
param = dot / len_sq;
var xx, yy;
if (param < 0) {
xx = x1;
yy = y1;
}
else if (param > 1) {
xx = x2;
yy = y2;
}
else {
xx = x1 + param * C;
yy = y1 + param * D;
}
var dx = x - xx;
var dy = y - yy;
return Math.sqrt(dx * dx + dy * dy);
}
UPDATED: Kotlin version
fun getDistance(x: Double, y: Double, x1: Double, y1: Double, x2: Double, y2: Double): Double {
val a = x - x1
val b = y - y1
val c = x2 - x1
val d = y2 - y1
val lenSq = c * c + d * d
val param = if (lenSq != .0) { //in case of 0 length line
val dot = a * c + b * d
dot / lenSq
} else {
-1.0
}
val (xx, yy) = when {
param < 0 -> x1 to y1
param > 1 -> x2 to y2
else -> x1 + param * c to y1 + param * d
}
val dx = x - xx
val dy = y - yy
return hypot(dx, dy)
}
This is an implementation made for FINITE LINE SEGMENTS, not infinite lines like most other functions here seem to be (that's why I made this).
Implementation of theory by Paul Bourke.
Python:
def dist(x1, y1, x2, y2, x3, y3): # x3,y3 is the point
px = x2-x1
py = y2-y1
norm = px*px + py*py
u = ((x3 - x1) * px + (y3 - y1) * py) / float(norm)
if u > 1:
u = 1
elif u < 0:
u = 0
x = x1 + u * px
y = y1 + u * py
dx = x - x3
dy = y - y3
# Note: If the actual distance does not matter,
# if you only want to compare what this function
# returns to other results of this function, you
# can just return the squared distance instead
# (i.e. remove the sqrt) to gain a little performance
dist = (dx*dx + dy*dy)**.5
return dist
AS3:
public static function segmentDistToPoint(segA:Point, segB:Point, p:Point):Number
{
var p2:Point = new Point(segB.x - segA.x, segB.y - segA.y);
var something:Number = p2.x*p2.x + p2.y*p2.y;
var u:Number = ((p.x - segA.x) * p2.x + (p.y - segA.y) * p2.y) / something;
if (u > 1)
u = 1;
else if (u < 0)
u = 0;
var x:Number = segA.x + u * p2.x;
var y:Number = segA.y + u * p2.y;
var dx:Number = x - p.x;
var dy:Number = y - p.y;
var dist:Number = Math.sqrt(dx*dx + dy*dy);
return dist;
}
Java
private double shortestDistance(float x1,float y1,float x2,float y2,float x3,float y3)
{
float px=x2-x1;
float py=y2-y1;
float temp=(px*px)+(py*py);
float u=((x3 - x1) * px + (y3 - y1) * py) / (temp);
if(u>1){
u=1;
}
else if(u<0){
u=0;
}
float x = x1 + u * px;
float y = y1 + u * py;
float dx = x - x3;
float dy = y - y3;
double dist = Math.sqrt(dx*dx + dy*dy);
return dist;
}
In my own question thread how to calculate shortest 2D distance between a point and a line segment in all cases in C, C# / .NET 2.0 or Java? I was asked to put a C# answer here when I find one: so here it is, modified from http://www.topcoder.com/tc?d1=tutorials&d2=geometry1&module=Static :
//Compute the dot product AB . BC
private double DotProduct(double[] pointA, double[] pointB, double[] pointC)
{
double[] AB = new double[2];
double[] BC = new double[2];
AB[0] = pointB[0] - pointA[0];
AB[1] = pointB[1] - pointA[1];
BC[0] = pointC[0] - pointB[0];
BC[1] = pointC[1] - pointB[1];
double dot = AB[0] * BC[0] + AB[1] * BC[1];
return dot;
}
//Compute the cross product AB x AC
private double CrossProduct(double[] pointA, double[] pointB, double[] pointC)
{
double[] AB = new double[2];
double[] AC = new double[2];
AB[0] = pointB[0] - pointA[0];
AB[1] = pointB[1] - pointA[1];
AC[0] = pointC[0] - pointA[0];
AC[1] = pointC[1] - pointA[1];
double cross = AB[0] * AC[1] - AB[1] * AC[0];
return cross;
}
//Compute the distance from A to B
double Distance(double[] pointA, double[] pointB)
{
double d1 = pointA[0] - pointB[0];
double d2 = pointA[1] - pointB[1];
return Math.Sqrt(d1 * d1 + d2 * d2);
}
//Compute the distance from AB to C
//if isSegment is true, AB is a segment, not a line.
double LineToPointDistance2D(double[] pointA, double[] pointB, double[] pointC,
bool isSegment)
{
double dist = CrossProduct(pointA, pointB, pointC) / Distance(pointA, pointB);
if (isSegment)
{
double dot1 = DotProduct(pointA, pointB, pointC);
if (dot1 > 0)
return Distance(pointB, pointC);
double dot2 = DotProduct(pointB, pointA, pointC);
if (dot2 > 0)
return Distance(pointA, pointC);
}
return Math.Abs(dist);
}
I'm #SO not to answer but ask questions so I hope I don't get million down votes for some reasons but constructing critic. I just wanted (and was encouraged) to share somebody else's ideas since the solutions in this thread are either with some exotic language (Fortran, Mathematica) or tagged as faulty by somebody. The only useful one (by Grumdrig) for me is written with C++ and nobody tagged it faulty. But it's missing the methods (dot etc.) that are called.
For anyone interested, here's a trivial conversion of Joshua's Javascript code to Objective-C:
- (double)distanceToPoint:(CGPoint)p fromLineSegmentBetween:(CGPoint)l1 and:(CGPoint)l2
{
double A = p.x - l1.x;
double B = p.y - l1.y;
double C = l2.x - l1.x;
double D = l2.y - l1.y;
double dot = A * C + B * D;
double len_sq = C * C + D * D;
double param = dot / len_sq;
double xx, yy;
if (param < 0 || (l1.x == l2.x && l1.y == l2.y)) {
xx = l1.x;
yy = l1.y;
}
else if (param > 1) {
xx = l2.x;
yy = l2.y;
}
else {
xx = l1.x + param * C;
yy = l1.y + param * D;
}
double dx = p.x - xx;
double dy = p.y - yy;
return sqrtf(dx * dx + dy * dy);
}
I needed this solution to work with MKMapPoint so I will share it in case someone else needs it. Just some minor change and this will return the distance in meters :
- (double)distanceToPoint:(MKMapPoint)p fromLineSegmentBetween:(MKMapPoint)l1 and:(MKMapPoint)l2
{
double A = p.x - l1.x;
double B = p.y - l1.y;
double C = l2.x - l1.x;
double D = l2.y - l1.y;
double dot = A * C + B * D;
double len_sq = C * C + D * D;
double param = dot / len_sq;
double xx, yy;
if (param < 0 || (l1.x == l2.x && l1.y == l2.y)) {
xx = l1.x;
yy = l1.y;
}
else if (param > 1) {
xx = l2.x;
yy = l2.y;
}
else {
xx = l1.x + param * C;
yy = l1.y + param * D;
}
return MKMetersBetweenMapPoints(p, MKMapPointMake(xx, yy));
}
In F#, the distance from the point c to the line segment between a and b is given by:
let pointToLineSegmentDistance (a: Vector, b: Vector) (c: Vector) =
let d = b - a
let s = d.Length
let lambda = (c - a) * d / s
let p = (lambda |> max 0.0 |> min s) * d / s
(a + p - c).Length
The vector d points from a to b along the line segment. The dot product of d/s with c-a gives the parameter of the point of closest approach between the infinite line and the point c. The min and max function are used to clamp this parameter to the range 0..s so that the point lies between a and b. Finally, the length of a+p-c is the distance from c to the closest point on the line segment.
Example use:
pointToLineSegmentDistance (Vector(0.0, 0.0), Vector(1.0, 0.0)) (Vector(-1.0, 1.0))
In Mathematica
It uses a parametric description of the segment, and projects the point into the line defined by the segment. As the parameter goes from 0 to 1 in the segment, if the projection is outside this bounds, we compute the distance to the corresponding enpoint, instead of the straight line normal to the segment.
Clear["Global`*"];
distance[{start_, end_}, pt_] :=
Module[{param},
param = ((pt - start).(end - start))/Norm[end - start]^2; (*parameter. the "."
here means vector product*)
Which[
param < 0, EuclideanDistance[start, pt], (*If outside bounds*)
param > 1, EuclideanDistance[end, pt],
True, EuclideanDistance[pt, start + param (end - start)] (*Normal distance*)
]
];
Plotting result:
Plot3D[distance[{{0, 0}, {1, 0}}, {xp, yp}], {xp, -1, 2}, {yp, -1, 2}]
Plot those points nearer than a cutoff distance:
Contour Plot:
Hey, I just wrote this yesterday. It's in Actionscript 3.0, which is basically Javascript, though you might not have the same Point class.
//st = start of line segment
//b = the line segment (as in: st + b = end of line segment)
//pt = point to test
//Returns distance from point to line segment.
//Note: nearest point on the segment to the test point is right there if we ever need it
public static function linePointDist( st:Point, b:Point, pt:Point ):Number
{
var nearestPt:Point; //closest point on seqment to pt
var keyDot:Number = dot( b, pt.subtract( st ) ); //key dot product
var bLenSq:Number = dot( b, b ); //Segment length squared
if( keyDot <= 0 ) //pt is "behind" st, use st
{
nearestPt = st
}
else if( keyDot >= bLenSq ) //pt is "past" end of segment, use end (notice we are saving twin sqrts here cuz)
{
nearestPt = st.add(b);
}
else //pt is inside segment, reuse keyDot and bLenSq to get percent of seqment to move in to find closest point
{
var keyDotToPctOfB:Number = keyDot/bLenSq; //REM dot product comes squared
var partOfB:Point = new Point( b.x * keyDotToPctOfB, b.y * keyDotToPctOfB );
nearestPt = st.add(partOfB);
}
var dist:Number = (pt.subtract(nearestPt)).length;
return dist;
}
Also, there's a pretty complete and readable discussion of the problem here: notejot.com
One line solution using arctangents:
The idea is to move A to (0, 0) and rotate triangle clockwise to make C lay on X axis,
when this happen, By will be the distance.
a angle = Atan(Cy - Ay, Cx - Ax);
b angle = Atan(By - Ay, Bx - Ax);
AB length = Sqrt( (Bx - Ax)^2 + (By - Ay)^2 )
By = Sin ( bAngle - aAngle) * ABLength
C#
public double Distance(Point a, Point b, Point c)
{
// normalize points
Point cn = new Point(c.X - a.X, c.Y - a.Y);
Point bn = new Point(b.X - a.X, b.Y - a.Y);
double angle = Math.Atan2(bn.Y, bn.X) - Math.Atan2(cn.Y, cn.X);
double abLength = Math.Sqrt(bn.X*bn.X + bn.Y*bn.Y);
return Math.Sin(angle)*abLength;
}
One line C# (to be converted to SQL)
double distance = Math.Sin(Math.Atan2(b.Y - a.Y, b.X - a.X) - Math.Atan2(c.Y - a.Y, c.X - a.X)) * Math.Sqrt((b.X - a.X) * (b.X - a.X) + (b.Y - a.Y) * (b.Y - a.Y))
For the lazy, here's my Objective-C port of #Grumdrig's solution above:
CGFloat sqr(CGFloat x) { return x*x; }
CGFloat dist2(CGPoint v, CGPoint w) { return sqr(v.x - w.x) + sqr(v.y - w.y); }
CGFloat distanceToSegmentSquared(CGPoint p, CGPoint v, CGPoint w)
{
CGFloat l2 = dist2(v, w);
if (l2 == 0.0f) return dist2(p, v);
CGFloat t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
if (t < 0.0f) return dist2(p, v);
if (t > 1.0f) return dist2(p, w);
return dist2(p, CGPointMake(v.x + t * (w.x - v.x), v.y + t * (w.y - v.y)));
}
CGFloat distanceToSegment(CGPoint point, CGPoint segmentPointV, CGPoint segmentPointW)
{
return sqrtf(distanceToSegmentSquared(point, segmentPointV, segmentPointW));
}
Couldn't resist coding it in python :)
from math import sqrt, fabs
def pdis(a, b, c):
t = b[0]-a[0], b[1]-a[1] # Vector ab
dd = sqrt(t[0]**2+t[1]**2) # Length of ab
t = t[0]/dd, t[1]/dd # unit vector of ab
n = -t[1], t[0] # normal unit vector to ab
ac = c[0]-a[0], c[1]-a[1] # vector ac
return fabs(ac[0]*n[0]+ac[1]*n[1]) # Projection of ac to n (the minimum distance)
print pdis((1,1), (2,2), (2,0)) # Example (answer is 1.414)
Ditto for fortran :)
real function pdis(a, b, c)
real, dimension(0:1), intent(in) :: a, b, c
real, dimension(0:1) :: t, n, ac
real :: dd
t = b - a ! Vector ab
dd = sqrt(t(0)**2+t(1)**2) ! Length of ab
t = t/dd ! unit vector of ab
n = (/-t(1), t(0)/) ! normal unit vector to ab
ac = c - a ! vector ac
pdis = abs(ac(0)*n(0)+ac(1)*n(1)) ! Projection of ac to n (the minimum distance)
end function pdis
program test
print *, pdis((/1.0,1.0/), (/2.0,2.0/), (/2.0,0.0/)) ! Example (answer is 1.414)
end program test
Here is a more complete spelling out of Grumdrig's solution. This version also returns the closest point itself.
#include "stdio.h"
#include "math.h"
class Vec2
{
public:
float _x;
float _y;
Vec2()
{
_x = 0;
_y = 0;
}
Vec2( const float x, const float y )
{
_x = x;
_y = y;
}
Vec2 operator+( const Vec2 &v ) const
{
return Vec2( this->_x + v._x, this->_y + v._y );
}
Vec2 operator-( const Vec2 &v ) const
{
return Vec2( this->_x - v._x, this->_y - v._y );
}
Vec2 operator*( const float f ) const
{
return Vec2( this->_x * f, this->_y * f );
}
float DistanceToSquared( const Vec2 p ) const
{
const float dX = p._x - this->_x;
const float dY = p._y - this->_y;
return dX * dX + dY * dY;
}
float DistanceTo( const Vec2 p ) const
{
return sqrt( this->DistanceToSquared( p ) );
}
float DotProduct( const Vec2 p ) const
{
return this->_x * p._x + this->_y * p._y;
}
};
// return minimum distance between line segment vw and point p, and the closest point on the line segment, q
float DistanceFromLineSegmentToPoint( const Vec2 v, const Vec2 w, const Vec2 p, Vec2 * const q )
{
const float distSq = v.DistanceToSquared( w ); // i.e. |w-v|^2 ... avoid a sqrt
if ( distSq == 0.0 )
{
// v == w case
(*q) = v;
return v.DistanceTo( p );
}
// consider the line extending the segment, parameterized as v + t (w - v)
// we find projection of point p onto the line
// it falls where t = [(p-v) . (w-v)] / |w-v|^2
const float t = ( p - v ).DotProduct( w - v ) / distSq;
if ( t < 0.0 )
{
// beyond the v end of the segment
(*q) = v;
return v.DistanceTo( p );
}
else if ( t > 1.0 )
{
// beyond the w end of the segment
(*q) = w;
return w.DistanceTo( p );
}
// projection falls on the segment
const Vec2 projection = v + ( ( w - v ) * t );
(*q) = projection;
return p.DistanceTo( projection );
}
float DistanceFromLineSegmentToPoint( float segmentX1, float segmentY1, float segmentX2, float segmentY2, float pX, float pY, float *qX, float *qY )
{
Vec2 q;
float distance = DistanceFromLineSegmentToPoint( Vec2( segmentX1, segmentY1 ), Vec2( segmentX2, segmentY2 ), Vec2( pX, pY ), &q );
(*qX) = q._x;
(*qY) = q._y;
return distance;
}
void TestDistanceFromLineSegmentToPoint( float segmentX1, float segmentY1, float segmentX2, float segmentY2, float pX, float pY )
{
float qX;
float qY;
float d = DistanceFromLineSegmentToPoint( segmentX1, segmentY1, segmentX2, segmentY2, pX, pY, &qX, &qY );
printf( "line segment = ( ( %f, %f ), ( %f, %f ) ), p = ( %f, %f ), distance = %f, q = ( %f, %f )\n",
segmentX1, segmentY1, segmentX2, segmentY2, pX, pY, d, qX, qY );
}
void TestDistanceFromLineSegmentToPoint()
{
TestDistanceFromLineSegmentToPoint( 0, 0, 1, 1, 1, 0 );
TestDistanceFromLineSegmentToPoint( 0, 0, 20, 10, 5, 4 );
TestDistanceFromLineSegmentToPoint( 0, 0, 20, 10, 30, 15 );
TestDistanceFromLineSegmentToPoint( 0, 0, 20, 10, -30, 15 );
TestDistanceFromLineSegmentToPoint( 0, 0, 10, 0, 5, 1 );
TestDistanceFromLineSegmentToPoint( 0, 0, 0, 10, 1, 5 );
}
Consider this modification to Grumdrig's answer above. Many times you'll find that floating point imprecision can cause problems. I'm using doubles in the version below, but you can easily change to floats. The important part is that it uses an epsilon to handle the "slop". In addition, you'll many times want to know WHERE the intersection happened, or if it happened at all. If the returned t is < 0.0 or > 1.0, no collision occurred. However, even if no collision occurred, many times you'll want to know where the closest point on the segment to P is, and thus I use qx and qy to return this location.
double PointSegmentDistanceSquared( double px, double py,
double p1x, double p1y,
double p2x, double p2y,
double& t,
double& qx, double& qy)
{
static const double kMinSegmentLenSquared = 0.00000001; // adjust to suit. If you use float, you'll probably want something like 0.000001f
static const double kEpsilon = 1.0E-14; // adjust to suit. If you use floats, you'll probably want something like 1E-7f
double dx = p2x - p1x;
double dy = p2y - p1y;
double dp1x = px - p1x;
double dp1y = py - p1y;
const double segLenSquared = (dx * dx) + (dy * dy);
if (segLenSquared >= -kMinSegmentLenSquared && segLenSquared <= kMinSegmentLenSquared)
{
// segment is a point.
qx = p1x;
qy = p1y;
t = 0.0;
return ((dp1x * dp1x) + (dp1y * dp1y));
}
else
{
// Project a line from p to the segment [p1,p2]. By considering the line
// extending the segment, parameterized as p1 + (t * (p2 - p1)),
// we find projection of point p onto the line.
// It falls where t = [(p - p1) . (p2 - p1)] / |p2 - p1|^2
t = ((dp1x * dx) + (dp1y * dy)) / segLenSquared;
if (t < kEpsilon)
{
// intersects at or to the "left" of first segment vertex (p1x, p1y). If t is approximately 0.0, then
// intersection is at p1. If t is less than that, then there is no intersection (i.e. p is not within
// the 'bounds' of the segment)
if (t > -kEpsilon)
{
// intersects at 1st segment vertex
t = 0.0;
}
// set our 'intersection' point to p1.
qx = p1x;
qy = p1y;
// Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
// we were doing PointLineDistanceSquared, then qx would be (p1x + (t * dx)) and qy would be (p1y + (t * dy)).
}
else if (t > (1.0 - kEpsilon))
{
// intersects at or to the "right" of second segment vertex (p2x, p2y). If t is approximately 1.0, then
// intersection is at p2. If t is greater than that, then there is no intersection (i.e. p is not within
// the 'bounds' of the segment)
if (t < (1.0 + kEpsilon))
{
// intersects at 2nd segment vertex
t = 1.0;
}
// set our 'intersection' point to p2.
qx = p2x;
qy = p2y;
// Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
// we were doing PointLineDistanceSquared, then qx would be (p1x + (t * dx)) and qy would be (p1y + (t * dy)).
}
else
{
// The projection of the point to the point on the segment that is perpendicular succeeded and the point
// is 'within' the bounds of the segment. Set the intersection point as that projected point.
qx = p1x + (t * dx);
qy = p1y + (t * dy);
}
// return the squared distance from p to the intersection point. Note that we return the squared distance
// as an optimization because many times you just need to compare relative distances and the squared values
// works fine for that. If you want the ACTUAL distance, just take the square root of this value.
double dpqx = px - qx;
double dpqy = py - qy;
return ((dpqx * dpqx) + (dpqy * dpqy));
}
}
I'm assuming you want to find the shortest distance between the point and a line segment; to do this, you need to find the line (lineA) which is perpendicular to your line segment (lineB) which goes through your point, determine the intersection between that line (lineA) and your line which goes through your line segment (lineB); if that point is between the two points of your line segment, then the distance is the distance between your point and the point you just found which is the intersection of lineA and lineB; if the point is not between the two points of your line segment, you need to get the distance between your point and the closer of two ends of the line segment; this can be done easily by taking the square distance (to avoid a square root) between the point and the two points of the line segment; whichever is closer, take the square root of that one.
Here it is using Swift
/* Distance from a point (p1) to line l1 l2 */
func distanceFromPoint(p: CGPoint, toLineSegment l1: CGPoint, and l2: CGPoint) -> CGFloat {
let A = p.x - l1.x
let B = p.y - l1.y
let C = l2.x - l1.x
let D = l2.y - l1.y
let dot = A * C + B * D
let len_sq = C * C + D * D
let param = dot / len_sq
var xx, yy: CGFloat
if param < 0 || (l1.x == l2.x && l1.y == l2.y) {
xx = l1.x
yy = l1.y
} else if param > 1 {
xx = l2.x
yy = l2.y
} else {
xx = l1.x + param * C
yy = l1.y + param * D
}
let dx = p.x - xx
let dy = p.y - yy
return sqrt(dx * dx + dy * dy)
}
Grumdrig's C++/JavaScript implementation was very useful to me, so I have provided a Python direct port that I am using. The complete code is here.
class Point(object):
def __init__(self, x, y):
self.x = float(x)
self.y = float(y)
def square(x):
return x * x
def distance_squared(v, w):
return square(v.x - w.x) + square(v.y - w.y)
def distance_point_segment_squared(p, v, w):
# Segment length squared, |w-v|^2
d2 = distance_squared(v, w)
if d2 == 0:
# v == w, return distance to v
return distance_squared(p, v)
# Consider the line extending the segment, parameterized as v + t (w - v).
# We find projection of point p onto the line.
# It falls where t = [(p-v) . (w-v)] / |w-v|^2
t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / d2;
if t < 0:
# Beyond v end of the segment
return distance_squared(p, v)
elif t > 1.0:
# Beyond w end of the segment
return distance_squared(p, w)
else:
# Projection falls on the segment.
proj = Point(v.x + t * (w.x - v.x), v.y + t * (w.y - v.y))
# print proj.x, proj.y
return distance_squared(p, proj)
And now my solution as well......
(Javascript)
It is very fast because I try to avoid any Math.pow functions.
As you can see, at the end of the function I have the distance of the line.
code is from the lib http://www.draw2d.org/graphiti/jsdoc/#!/example
/**
* Static util function to determine is a point(px,py) on the line(x1,y1,x2,y2)
* A simple hit test.
*
* #return {boolean}
* #static
* #private
* #param {Number} coronaWidth the accepted corona for the hit test
* #param {Number} X1 x coordinate of the start point of the line
* #param {Number} Y1 y coordinate of the start point of the line
* #param {Number} X2 x coordinate of the end point of the line
* #param {Number} Y2 y coordinate of the end point of the line
* #param {Number} px x coordinate of the point to test
* #param {Number} py y coordinate of the point to test
**/
graphiti.shape.basic.Line.hit= function( coronaWidth, X1, Y1, X2, Y2, px, py)
{
// Adjust vectors relative to X1,Y1
// X2,Y2 becomes relative vector from X1,Y1 to end of segment
X2 -= X1;
Y2 -= Y1;
// px,py becomes relative vector from X1,Y1 to test point
px -= X1;
py -= Y1;
var dotprod = px * X2 + py * Y2;
var projlenSq;
if (dotprod <= 0.0) {
// px,py is on the side of X1,Y1 away from X2,Y2
// distance to segment is length of px,py vector
// "length of its (clipped) projection" is now 0.0
projlenSq = 0.0;
} else {
// switch to backwards vectors relative to X2,Y2
// X2,Y2 are already the negative of X1,Y1=>X2,Y2
// to get px,py to be the negative of px,py=>X2,Y2
// the dot product of two negated vectors is the same
// as the dot product of the two normal vectors
px = X2 - px;
py = Y2 - py;
dotprod = px * X2 + py * Y2;
if (dotprod <= 0.0) {
// px,py is on the side of X2,Y2 away from X1,Y1
// distance to segment is length of (backwards) px,py vector
// "length of its (clipped) projection" is now 0.0
projlenSq = 0.0;
} else {
// px,py is between X1,Y1 and X2,Y2
// dotprod is the length of the px,py vector
// projected on the X2,Y2=>X1,Y1 vector times the
// length of the X2,Y2=>X1,Y1 vector
projlenSq = dotprod * dotprod / (X2 * X2 + Y2 * Y2);
}
}
// Distance to line is now the length of the relative point
// vector minus the length of its projection onto the line
// (which is zero if the projection falls outside the range
// of the line segment).
var lenSq = px * px + py * py - projlenSq;
if (lenSq < 0) {
lenSq = 0;
}
return Math.sqrt(lenSq)<coronaWidth;
};
C#
Adapted from #Grumdrig
public static double MinimumDistanceToLineSegment(this Point p,
Line line)
{
var v = line.StartPoint;
var w = line.EndPoint;
double lengthSquared = DistanceSquared(v, w);
if (lengthSquared == 0.0)
return Distance(p, v);
double t = Math.Max(0, Math.Min(1, DotProduct(p - v, w - v) / lengthSquared));
var projection = v + t * (w - v);
return Distance(p, projection);
}
public static double Distance(Point a, Point b)
{
return Math.Sqrt(DistanceSquared(a, b));
}
public static double DistanceSquared(Point a, Point b)
{
var d = a - b;
return DotProduct(d, d);
}
public static double DotProduct(Point a, Point b)
{
return (a.X * b.X) + (a.Y * b.Y);
}
Matlab code, with built-in "self test" if they call the function with no arguments:
function r = distPointToLineSegment( xy0, xy1, xyP )
% r = distPointToLineSegment( xy0, xy1, xyP )
if( nargin < 3 )
selfTest();
r=0;
else
vx = xy0(1)-xyP(1);
vy = xy0(2)-xyP(2);
ux = xy1(1)-xy0(1);
uy = xy1(2)-xy0(2);
lenSqr= (ux*ux+uy*uy);
detP= -vx*ux + -vy*uy;
if( detP < 0 )
r = norm(xy0-xyP,2);
elseif( detP > lenSqr )
r = norm(xy1-xyP,2);
else
r = abs(ux*vy-uy*vx)/sqrt(lenSqr);
end
end
function selfTest()
%#ok<*NASGU>
disp(['invalid args, distPointToLineSegment running (recursive) self-test...']);
ptA = [1;1]; ptB = [-1;-1];
ptC = [1/2;1/2]; % on the line
ptD = [-2;-1.5]; % too far from line segment
ptE = [1/2;0]; % should be same as perpendicular distance to line
ptF = [1.5;1.5]; % along the A-B but outside of the segment
distCtoAB = distPointToLineSegment(ptA,ptB,ptC)
distDtoAB = distPointToLineSegment(ptA,ptB,ptD)
distEtoAB = distPointToLineSegment(ptA,ptB,ptE)
distFtoAB = distPointToLineSegment(ptA,ptB,ptF)
figure(1); clf;
circle = #(x, y, r, c) rectangle('Position', [x-r, y-r, 2*r, 2*r], ...
'Curvature', [1 1], 'EdgeColor', c);
plot([ptA(1) ptB(1)],[ptA(2) ptB(2)],'r-x'); hold on;
plot(ptC(1),ptC(2),'b+'); circle(ptC(1),ptC(2), 0.5e-1, 'b');
plot(ptD(1),ptD(2),'g+'); circle(ptD(1),ptD(2), distDtoAB, 'g');
plot(ptE(1),ptE(2),'k+'); circle(ptE(1),ptE(2), distEtoAB, 'k');
plot(ptF(1),ptF(2),'m+'); circle(ptF(1),ptF(2), distFtoAB, 'm');
hold off;
axis([-3 3 -3 3]); axis equal;
end
end
coded in t-sql
the point is (#px, #py) and the line segment runs from (#ax, #ay) to (#bx, #by)
create function fn_sqr (#NumberToSquare decimal(18,10))
returns decimal(18,10)
as
begin
declare #Result decimal(18,10)
set #Result = #NumberToSquare * #NumberToSquare
return #Result
end
go
create function fn_Distance(#ax decimal (18,10) , #ay decimal (18,10), #bx decimal(18,10), #by decimal(18,10))
returns decimal(18,10)
as
begin
declare #Result decimal(18,10)
set #Result = (select dbo.fn_sqr(#ax - #bx) + dbo.fn_sqr(#ay - #by) )
return #Result
end
go
create function fn_DistanceToSegmentSquared(#px decimal(18,10), #py decimal(18,10), #ax decimal(18,10), #ay decimal(18,10), #bx decimal(18,10), #by decimal(18,10))
returns decimal(18,10)
as
begin
declare #l2 decimal(18,10)
set #l2 = (select dbo.fn_Distance(#ax, #ay, #bx, #by))
if #l2 = 0
return dbo.fn_Distance(#px, #py, #ax, #ay)
declare #t decimal(18,10)
set #t = ((#px - #ax) * (#bx - #ax) + (#py - #ay) * (#by - #ay)) / #l2
if (#t < 0)
return dbo.fn_Distance(#px, #py, #ax, #ay);
if (#t > 1)
return dbo.fn_Distance(#px, #py, #bx, #by);
return dbo.fn_Distance(#px, #py, #ax + #t * (#bx - #ax), #ay + #t * (#by - #ay))
end
go
create function fn_DistanceToSegment(#px decimal(18,10), #py decimal(18,10), #ax decimal(18,10), #ay decimal(18,10), #bx decimal(18,10), #by decimal(18,10))
returns decimal(18,10)
as
begin
return sqrt(dbo.fn_DistanceToSegmentSquared(#px, #py , #ax , #ay , #bx , #by ))
end
go
--example execution for distance from a point at (6,1) to line segment that runs from (4,2) to (2,1)
select dbo.fn_DistanceToSegment(6, 1, 4, 2, 2, 1)
--result = 2.2360679775
--example execution for distance from a point at (-3,-2) to line segment that runs from (0,-2) to (-2,1)
select dbo.fn_DistanceToSegment(-3, -2, 0, -2, -2, 1)
--result = 2.4961508830
--example execution for distance from a point at (0,-2) to line segment that runs from (0,-2) to (-2,1)
select dbo.fn_DistanceToSegment(0,-2, 0, -2, -2, 1)
--result = 0.0000000000
Looks like just about everyone else on StackOverflow has contributed an answer (23 answers so far), so here's my contribution for C#. This is mostly based on the answer by M. Katz, which in turn is based on the answer by Grumdrig.
public struct MyVector
{
private readonly double _x, _y;
// Constructor
public MyVector(double x, double y)
{
_x = x;
_y = y;
}
// Distance from this point to another point, squared
private double DistanceSquared(MyVector otherPoint)
{
double dx = otherPoint._x - this._x;
double dy = otherPoint._y - this._y;
return dx * dx + dy * dy;
}
// Find the distance from this point to a line segment (which is not the same as from this
// point to anywhere on an infinite line). Also returns the closest point.
public double DistanceToLineSegment(MyVector lineSegmentPoint1, MyVector lineSegmentPoint2,
out MyVector closestPoint)
{
return Math.Sqrt(DistanceToLineSegmentSquared(lineSegmentPoint1, lineSegmentPoint2,
out closestPoint));
}
// Same as above, but avoid using Sqrt(), saves a new nanoseconds in cases where you only want
// to compare several distances to find the smallest or largest, but don't need the distance
public double DistanceToLineSegmentSquared(MyVector lineSegmentPoint1,
MyVector lineSegmentPoint2, out MyVector closestPoint)
{
// Compute length of line segment (squared) and handle special case of coincident points
double segmentLengthSquared = lineSegmentPoint1.DistanceSquared(lineSegmentPoint2);
if (segmentLengthSquared < 1E-7f) // Arbitrary "close enough for government work" value
{
closestPoint = lineSegmentPoint1;
return this.DistanceSquared(closestPoint);
}
// Use the magic formula to compute the "projection" of this point on the infinite line
MyVector lineSegment = lineSegmentPoint2 - lineSegmentPoint1;
double t = (this - lineSegmentPoint1).DotProduct(lineSegment) / segmentLengthSquared;
// Handle the two cases where the projection is not on the line segment, and the case where
// the projection is on the segment
if (t <= 0)
closestPoint = lineSegmentPoint1;
else if (t >= 1)
closestPoint = lineSegmentPoint2;
else
closestPoint = lineSegmentPoint1 + (lineSegment * t);
return this.DistanceSquared(closestPoint);
}
public double DotProduct(MyVector otherVector)
{
return this._x * otherVector._x + this._y * otherVector._y;
}
public static MyVector operator +(MyVector leftVector, MyVector rightVector)
{
return new MyVector(leftVector._x + rightVector._x, leftVector._y + rightVector._y);
}
public static MyVector operator -(MyVector leftVector, MyVector rightVector)
{
return new MyVector(leftVector._x - rightVector._x, leftVector._y - rightVector._y);
}
public static MyVector operator *(MyVector aVector, double aScalar)
{
return new MyVector(aVector._x * aScalar, aVector._y * aScalar);
}
// Added using ReSharper due to CodeAnalysis nagging
public bool Equals(MyVector other)
{
return _x.Equals(other._x) && _y.Equals(other._y);
}
public override bool Equals(object obj)
{
if (ReferenceEquals(null, obj)) return false;
return obj is MyVector && Equals((MyVector) obj);
}
public override int GetHashCode()
{
unchecked
{
return (_x.GetHashCode()*397) ^ _y.GetHashCode();
}
}
public static bool operator ==(MyVector left, MyVector right)
{
return left.Equals(right);
}
public static bool operator !=(MyVector left, MyVector right)
{
return !left.Equals(right);
}
}
And here's a little test program.
public static class JustTesting
{
public static void Main()
{
Stopwatch stopwatch = new Stopwatch();
stopwatch.Start();
for (int i = 0; i < 10000000; i++)
{
TestIt(1, 0, 0, 0, 1, 1, 0.70710678118654757);
TestIt(5, 4, 0, 0, 20, 10, 1.3416407864998738);
TestIt(30, 15, 0, 0, 20, 10, 11.180339887498949);
TestIt(-30, 15, 0, 0, 20, 10, 33.541019662496844);
TestIt(5, 1, 0, 0, 10, 0, 1.0);
TestIt(1, 5, 0, 0, 0, 10, 1.0);
}
stopwatch.Stop();
TimeSpan timeSpan = stopwatch.Elapsed;
}
private static void TestIt(float aPointX, float aPointY,
float lineSegmentPoint1X, float lineSegmentPoint1Y,
float lineSegmentPoint2X, float lineSegmentPoint2Y,
double expectedAnswer)
{
// Katz
double d1 = DistanceFromPointToLineSegment(new MyVector(aPointX, aPointY),
new MyVector(lineSegmentPoint1X, lineSegmentPoint1Y),
new MyVector(lineSegmentPoint2X, lineSegmentPoint2Y));
Debug.Assert(d1 == expectedAnswer);
/*
// Katz using squared distance
double d2 = DistanceFromPointToLineSegmentSquared(new MyVector(aPointX, aPointY),
new MyVector(lineSegmentPoint1X, lineSegmentPoint1Y),
new MyVector(lineSegmentPoint2X, lineSegmentPoint2Y));
Debug.Assert(Math.Abs(d2 - expectedAnswer * expectedAnswer) < 1E-7f);
*/
/*
// Matti (optimized)
double d3 = FloatVector.DistanceToLineSegment(new PointF(aPointX, aPointY),
new PointF(lineSegmentPoint1X, lineSegmentPoint1Y),
new PointF(lineSegmentPoint2X, lineSegmentPoint2Y));
Debug.Assert(Math.Abs(d3 - expectedAnswer) < 1E-7f);
*/
}
private static double DistanceFromPointToLineSegment(MyVector aPoint,
MyVector lineSegmentPoint1, MyVector lineSegmentPoint2)
{
MyVector closestPoint; // Not used
return aPoint.DistanceToLineSegment(lineSegmentPoint1, lineSegmentPoint2,
out closestPoint);
}
private static double DistanceFromPointToLineSegmentSquared(MyVector aPoint,
MyVector lineSegmentPoint1, MyVector lineSegmentPoint2)
{
MyVector closestPoint; // Not used
return aPoint.DistanceToLineSegmentSquared(lineSegmentPoint1, lineSegmentPoint2,
out closestPoint);
}
}
As you can see, I tried to measure the difference between using the version that avoids the Sqrt() method and the normal version. My tests indicate you can maybe save about 2.5%, but I'm not even sure of that - the variations within the various test runs were of the same order of magnitude. I also tried measuring the version posted by Matti (plus an obvious optimization), and that version seems to be about 4% slower than the version based on Katz/Grumdrig code.
Edit: Incidentally, I've also tried measuring a method that finds the distance to an infinite line (not a line segment) using a cross product (and a Sqrt()), and it's about 32% faster.
Here is devnullicus's C++ version converted to C#. For my implementation I needed to know the point of intersection and found his solution to work well.
public static bool PointSegmentDistanceSquared(PointF point, PointF lineStart, PointF lineEnd, out double distance, out PointF intersectPoint)
{
const double kMinSegmentLenSquared = 0.00000001; // adjust to suit. If you use float, you'll probably want something like 0.000001f
const double kEpsilon = 1.0E-14; // adjust to suit. If you use floats, you'll probably want something like 1E-7f
double dX = lineEnd.X - lineStart.X;
double dY = lineEnd.Y - lineStart.Y;
double dp1X = point.X - lineStart.X;
double dp1Y = point.Y - lineStart.Y;
double segLenSquared = (dX * dX) + (dY * dY);
double t = 0.0;
if (segLenSquared >= -kMinSegmentLenSquared && segLenSquared <= kMinSegmentLenSquared)
{
// segment is a point.
intersectPoint = lineStart;
t = 0.0;
distance = ((dp1X * dp1X) + (dp1Y * dp1Y));
}
else
{
// Project a line from p to the segment [p1,p2]. By considering the line
// extending the segment, parameterized as p1 + (t * (p2 - p1)),
// we find projection of point p onto the line.
// It falls where t = [(p - p1) . (p2 - p1)] / |p2 - p1|^2
t = ((dp1X * dX) + (dp1Y * dY)) / segLenSquared;
if (t < kEpsilon)
{
// intersects at or to the "left" of first segment vertex (lineStart.X, lineStart.Y). If t is approximately 0.0, then
// intersection is at p1. If t is less than that, then there is no intersection (i.e. p is not within
// the 'bounds' of the segment)
if (t > -kEpsilon)
{
// intersects at 1st segment vertex
t = 0.0;
}
// set our 'intersection' point to p1.
intersectPoint = lineStart;
// Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
// we were doing PointLineDistanceSquared, then intersectPoint.X would be (lineStart.X + (t * dx)) and intersectPoint.Y would be (lineStart.Y + (t * dy)).
}
else if (t > (1.0 - kEpsilon))
{
// intersects at or to the "right" of second segment vertex (lineEnd.X, lineEnd.Y). If t is approximately 1.0, then
// intersection is at p2. If t is greater than that, then there is no intersection (i.e. p is not within
// the 'bounds' of the segment)
if (t < (1.0 + kEpsilon))
{
// intersects at 2nd segment vertex
t = 1.0;
}
// set our 'intersection' point to p2.
intersectPoint = lineEnd;
// Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
// we were doing PointLineDistanceSquared, then intersectPoint.X would be (lineStart.X + (t * dx)) and intersectPoint.Y would be (lineStart.Y + (t * dy)).
}
else
{
// The projection of the point to the point on the segment that is perpendicular succeeded and the point
// is 'within' the bounds of the segment. Set the intersection point as that projected point.
intersectPoint = new PointF((float)(lineStart.X + (t * dX)), (float)(lineStart.Y + (t * dY)));
}
// return the squared distance from p to the intersection point. Note that we return the squared distance
// as an optimization because many times you just need to compare relative distances and the squared values
// works fine for that. If you want the ACTUAL distance, just take the square root of this value.
double dpqX = point.X - intersectPoint.X;
double dpqY = point.Y - intersectPoint.Y;
distance = ((dpqX * dpqX) + (dpqY * dpqY));
}
return true;
}
A 2D and 3D solution
Consider a change of basis such that the line segment becomes (0, 0, 0)-(d, 0, 0) and the point (u, v, 0). The shortest distance occurs in that plane and is given by
u ≤ 0 -> d(A, C)
0 ≤ u ≤ d -> |v|
d ≤ u -> d(B, C)
(the distance to one of the endpoints or to the supporting line, depending on the projection to the line. The iso-distance locus is made of two half-circles and two line segments.)
In the above expression, d is the length of the segment AB, and u, v are respectivey the scalar product and (modulus of the) cross product of AB/d (unit vector in the direction of AB) and AC. Hence vectorially,
AB.AC ≤ 0 -> |AC|
0 ≤ AB.AC ≤ AB² -> |ABxAC|/|AB|
AB² ≤ AB.AC -> |BC|
see the Matlab GEOMETRY toolbox in the following website:
http://people.sc.fsu.edu/~jburkardt/m_src/geometry/geometry.html
ctrl+f and type "segment" to find line segment related functions. the functions "segment_point_dist_2d.m" and "segment_point_dist_3d.m" are what you need.
The GEOMETRY codes are available in a C version and a C++ version and a FORTRAN77 version and a FORTRAN90 version and a MATLAB version.
AutoHotkeys version based on Joshua's Javascript:
plDist(x, y, x1, y1, x2, y2) {
A:= x - x1
B:= y - y1
C:= x2 - x1
D:= y2 - y1
dot:= A*C + B*D
sqLen:= C*C + D*D
param:= dot / sqLen
if (param < 0 || ((x1 = x2) && (y1 = y2))) {
xx:= x1
yy:= y1
} else if (param > 1) {
xx:= x2
yy:= y2
} else {
xx:= x1 + param*C
yy:= y1 + param*D
}
dx:= x - xx
dy:= y - yy
return sqrt(dx*dx + dy*dy)
}
the accepted answer does not work
(e.g. distance between 0,0 and (-10,2,10,2) should be 2).
here's code that works:
def dist2line2(x,y,line):
x1,y1,x2,y2=line
vx = x1 - x
vy = y1 - y
ux = x2-x1
uy = y2-y1
length = ux * ux + uy * uy
det = (-vx * ux) + (-vy * uy) #//if this is < 0 or > length then its outside the line segment
if det < 0:
return (x1 - x)**2 + (y1 - y)**2
if det > length:
return (x2 - x)**2 + (y2 - y)**2
det = ux * vy - uy * vx
return det**2 / length
def dist2line(x,y,line): return math.sqrt(dist2line2(x,y,line))
Didn't see a Java implementation here, so I translated the Javascript function from the accepted answer to Java code:
static double sqr(double x) {
return x * x;
}
static double dist2(DoublePoint v, DoublePoint w) {
return sqr(v.x - w.x) + sqr(v.y - w.y);
}
static double distToSegmentSquared(DoublePoint p, DoublePoint v, DoublePoint w) {
double l2 = dist2(v, w);
if (l2 == 0) return dist2(p, v);
double t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
if (t < 0) return dist2(p, v);
if (t > 1) return dist2(p, w);
return dist2(p, new DoublePoint(
v.x + t * (w.x - v.x),
v.y + t * (w.y - v.y)
));
}
static double distToSegment(DoublePoint p, DoublePoint v, DoublePoint w) {
return Math.sqrt(distToSegmentSquared(p, v, w));
}
static class DoublePoint {
public double x;
public double y;
public DoublePoint(double x, double y) {
this.x = x;
this.y = y;
}
}
WPF version:
public class LineSegment
{
private readonly Vector _offset;
private readonly Vector _vector;
public LineSegment(Point start, Point end)
{
_offset = (Vector)start;
_vector = (Vector)(end - _offset);
}
public double DistanceTo(Point pt)
{
var v = (Vector)pt - _offset;
// first, find a projection point on the segment in parametric form (0..1)
var p = (v * _vector) / _vector.LengthSquared;
// and limit it so it lays inside the segment
p = Math.Min(Math.Max(p, 0), 1);
// now, find the distance from that point to our point
return (_vector * p - v).Length;
}
}
I've made an interactive Desmos graph to demonstrate how to achieve this:
https://www.desmos.com/calculator/kswrm8ddum
The red point is A, the green point is B, and the point C is blue.
You can drag the points in the graph to see the values change.
On the left, the value 's' is the parameter of the line segment (i.e. s = 0 means the point A, and s = 1 means the point B).
The value 'd' is the distance from the third point to the line through A and B.
EDIT:
Fun little insight: the coordinate (s, d) is the coordinate of the third point C in the coordinate system where AB is the unit x-axis, and the unit y-axis is perpendicular to AB.
Python Numpy implementation for 2D coordinate array:
import numpy as np
def dist2d(p1, p2, coords):
''' Distance from points to a finite line btwn p1 -> p2 '''
assert coords.ndim == 2 and coords.shape[1] == 2, 'coords is not 2 dim'
dp = p2 - p1
st = dp[0]**2 + dp[1]**2
u = ((coords[:, 0] - p1[0]) * dp[0] + (coords[:, 1] - p1[1]) * dp[1]) / st
u[u > 1.] = 1.
u[u < 0.] = 0.
dx = (p1[0] + u * dp[0]) - coords[:, 0]
dy = (p1[1] + u * dp[1]) - coords[:, 1]
return np.sqrt(dx**2 + dy**2)
# Usage:
p1 = np.array([0., 0.])
p2 = np.array([0., 10.])
# List of coordinates
coords = np.array(
[[0., 0.],
[5., 5.],
[10., 10.],
[20., 20.]
])
d = dist2d(p1, p2, coords)
# Single coordinate
coord = np.array([25., 25.])
d = dist2d(p1, p2, coord[np.newaxis, :])

Real (Great Circle) distance in PostGIS with lat/long SRID?

I'm using a lat/long SRID in my PostGIS database (-4326). I would like to find the nearest points to a given point in an efficient manner. I tried doing an
ORDER BY ST_Distance(point, ST_GeomFromText(?,-4326))
which gives me ok results in the lower 48 states, but up in Alaska it gives me garbage. Is there a way to do real distance calculations in PostGIS, or am I going to have to give a reasonable sized buffer and then calculate the great circle distances and sort the results in the code afterwards?
You are looking for ST_distance_sphere(point,point) or st_distance_spheroid(point,point).
See:
http://postgis.refractions.net/documentation/manual-1.3/ch06.html#distance_sphere
http://postgis.refractions.net/documentation/manual-1.3/ch06.html#distance_spheroid
This is normally referred to a geodesic or geodetic distance... while the two terms have slightly different meanings, they tend to be used interchangably.
Alternatively, you can project the data and use the standard st_distance function... this is only practical over short distances (using UTM or state plane) or if all distances are relative to a one or two points (equidistant projections).
PostGIS 1.5 handles true globe distances using lat longs and meters. It is aware that lat/long is angular in nature and has a 360 degree line
This is from SQL Server, and I use Haversine for a ridiculously fast distance that may suffer from your Alaska issue (can be off by a mile):
ALTER function [dbo].[getCoordinateDistance]
(
#Latitude1 decimal(16,12),
#Longitude1 decimal(16,12),
#Latitude2 decimal(16,12),
#Longitude2 decimal(16,12)
)
returns decimal(16,12)
as
/*
fUNCTION: getCoordinateDistance
Computes the Great Circle distance in kilometers
between two points on the Earth using the
Haversine formula distance calculation.
Input Parameters:
#Longitude1 - Longitude in degrees of point 1
#Latitude1 - Latitude in degrees of point 1
#Longitude2 - Longitude in degrees of point 2
#Latitude2 - Latitude in degrees of point 2
*/
begin
declare #radius decimal(16,12)
declare #lon1 decimal(16,12)
declare #lon2 decimal(16,12)
declare #lat1 decimal(16,12)
declare #lat2 decimal(16,12)
declare #a decimal(16,12)
declare #distance decimal(16,12)
-- Sets average radius of Earth in Kilometers
set #radius = 6366.70701949371
-- Convert degrees to radians
set #lon1 = radians( #Longitude1 )
set #lon2 = radians( #Longitude2 )
set #lat1 = radians( #Latitude1 )
set #lat2 = radians( #Latitude2 )
set #a = sqrt(square(sin((#lat2-#lat1)/2.0E)) +
(cos(#lat1) * cos(#lat2) * square(sin((#lon2-#lon1)/2.0E))) )
set #distance =
#radius * ( 2.0E *asin(case when 1.0E < #a then 1.0E else #a end ) )
return #distance
end
Vicenty is slow, but accurate to within 1 mm (and I only found a javascript imp of it):
/*
* Calculate geodesic distance (in m) between two points specified by latitude/longitude (in numeric degrees)
* using Vincenty inverse formula for ellipsoids
*/
function distVincenty(lat1, lon1, lat2, lon2) {
var a = 6378137, b = 6356752.3142, f = 1/298.257223563; // WGS-84 ellipsiod
var L = (lon2-lon1).toRad();
var U1 = Math.atan((1-f) * Math.tan(lat1.toRad()));
var U2 = Math.atan((1-f) * Math.tan(lat2.toRad()));
var sinU1 = Math.sin(U1), cosU1 = Math.cos(U1);
var sinU2 = Math.sin(U2), cosU2 = Math.cos(U2);
var lambda = L, lambdaP = 2*Math.PI;
var iterLimit = 20;
while (Math.abs(lambda-lambdaP) > 1e-12 && --iterLimit>0) {
var sinLambda = Math.sin(lambda), cosLambda = Math.cos(lambda);
var sinSigma = Math.sqrt((cosU2*sinLambda) * (cosU2*sinLambda) +
(cosU1*sinU2-sinU1*cosU2*cosLambda) * (cosU1*sinU2-sinU1*cosU2*cosLambda));
if (sinSigma==0) return 0; // co-incident points
var cosSigma = sinU1*sinU2 + cosU1*cosU2*cosLambda;
var sigma = Math.atan2(sinSigma, cosSigma);
var sinAlpha = cosU1 * cosU2 * sinLambda / sinSigma;
var cosSqAlpha = 1 - sinAlpha*sinAlpha;
var cos2SigmaM = cosSigma - 2*sinU1*sinU2/cosSqAlpha;
if (isNaN(cos2SigmaM)) cos2SigmaM = 0; // equatorial line: cosSqAlpha=0 (§6)
var C = f/16*cosSqAlpha*(4+f*(4-3*cosSqAlpha));
lambdaP = lambda;
lambda = L + (1-C) * f * sinAlpha *
(sigma + C*sinSigma*(cos2SigmaM+C*cosSigma*(-1+2*cos2SigmaM*cos2SigmaM)));
}
if (iterLimit==0) return NaN // formula failed to converge
var uSq = cosSqAlpha * (a*a - b*b) / (b*b);
var A = 1 + uSq/16384*(4096+uSq*(-768+uSq*(320-175*uSq)));
var B = uSq/1024 * (256+uSq*(-128+uSq*(74-47*uSq)));
var deltaSigma = B*sinSigma*(cos2SigmaM+B/4*(cosSigma*(-1+2*cos2SigmaM*cos2SigmaM)-
B/6*cos2SigmaM*(-3+4*sinSigma*sinSigma)*(-3+4*cos2SigmaM*cos2SigmaM)));
var s = b*A*(sigma-deltaSigma);
s = s.toFixed(3); // round to 1mm precision
return s;
}