Golang Null Types and json.Decode() - json

I have not been able to find a way around this issue currently. If I have a structure i would like to populate with json from a http.Request I have no way to tell for instance what value was actually passed in for some values. For instance if I pass in an empty json object and run json.Decode on a structure that looks like this...
var Test struct {
Number int `json:"number"`
}
I now have a json object that supposedly was passed with a key of number and a value of zero when in fact I would rather have this return nothing at all. Does go provide another method that would actually allow me to see what JSON has been passed in or not.
Sorry for the rambling I have been trying to figure out how to to this for a few days now and it's driving me nuts.
Thanks for any help.
Edit:
I made this to depict exactly what I am talking about http://play.golang.org/p/aPFKSvuxC9

You could use pointers, for example:
func main() {
var jsonBlob = []byte(`[
{"Name": "Platypus"},
{"Name": "Quoll", "Order": 100}
]`)
type Animal struct {
Name string
Order *int
}
var animals []Animal
err := json.Unmarshal(jsonBlob, &animals)
if err != nil {
fmt.Println("error:", err)
}
for _, a := range animals {
if a.Order != nil {
fmt.Printf("got order, %s : %d\n", a.Name, *a.Order)
}
}
}

I don't see how you could do this by giving a struct to the Unmarshal function. With the following structure for instance:
type A struct {
Hello string
Foo int
Baz string
}
var a A
json.Unmarshal(data, &a)
Even by doing another implementation of Unmarshal, there would be only two (simple) possibilities:
If baz is not in the json data, set a.Baz to a default value, compatible with its type: the empty string (or 0 if it's an integer). This is the current implementation.
If baz is not in the json data, return an error. That would be very inconvenient if the absence of baz is a normal behaviour.
Another possibility would be to use pointers, and use the default value nil in the same spirit than the default value I talked about, but there would still be issue if your json file could be filled with null values: you would not be able to distinguish values that were in the json file, but set as null, and values that were not in the json, and unmarshalled with nil as their default value.
However, this solution might suit you: instead of using a struct, why not using a map[string]interface{} ? The Unmarshall function would not have to add a default value to non-present fields, and it would be able to retrieve any type of data from the json file.
var b = []byte(`[{"Name": "Platypus"}, {"Name": "Quoll", "Order": 100}]`)
var m []map[string]interface{}
err := json.Unmarshal(b, &m)
fmt.Println(m)
// [map[Name:Platypus] map[Name:Quoll Order:100]]

Related

Unmarshal remaining JSON after performing custom unmarshalling

I have a JSON object That contains an implementation of an interface within it. I'm attempting to take that JSON and marshal it into a struct whilst creating the implementation of the interface.
I've managed to get it to implement the interface with a custom JSON unmarshal function however I'm struggling to piece together how to then marshal the rest of the fields
I've created an example in the Go playground
https://play.golang.org/p/ztF7H7etdjM
My JSON being passed into my application is
{
"address":"1FYuJ4MsVmpzPoFJ6svJMJfygn91Eubid9",
"nonce":13,
"network_id":"qadre.demo.balance",
"challenge":"f2b19e71876c087e681fc092ea3a34d5680bbfe772e40883563e1d5513bb593f",
"type":"verifying_key",
"verifying_key":{
"verifying_key":"3b6a27bcceb6a42d62a3a8d02a6f0d73653215771de243a63ac048a18b59da29",
"fqdn":"huski.service.key"
},
"signature":"a3bf8ee202a508d5a5632f50b140b70b7095d8836493dc7ac4159f6f3350280078b3a58b2162a240bc8c7485894554976a9c7b5d279d3f5bf49fec950f024e02",
"fqdn":"huski.service.SingleKeyProof"
}
I've attempted to do a json.Unmarshal and pass in a new struct for the remaining fields however it seems to put me in an infinite loop, my application hangs and then crashes
The best solution I've come up with so far is to marshal the JSON into a `map[string]interface{} and do each field separately, this feels very clunky though
var m map[string]interface{}
if err := json.Unmarshal(data, &m); err != nil {
return err
}
ad, ok := m["address"]
if ok {
s.Address = ad.(string)
}
fqdn, ok := m["fqdn"]
if ok {
s.FQDN = fqdn.(string)
}
n, ok := m["nonce"]
if ok {
s.Nonce = int64(n.(float64))
}
c, ok := m["challenge"]
if ok {
s.Challenge = []byte(c.(string))
}
network, ok := m["network_id"]
if ok {
s.NetworkID = network.(string)
}
sig, ok := m["signature"]
if ok {
s.Signature = []byte(sig.(string))
}
The reason your code gets into an infinite loop when you try to unmarshal the rest of the fields is because, I presume, the implementation of UnmarshalJSON after its done unmarshaling the verifying key, calls json.Unmarshal with the receiver, which in turn calls the UnmarshalJSON method on the receiver and so they invoke each other ad infinitum.
What you can do is to create a temporary type using the existing type as its definition, this will "keep the structure" but "drop the methods", then unmarshal the rest of the fields into an instance of the new type, and, after unmarshal is done, convert the instance to the original type and assign that to the receiver.
While this fixes the infinite loop, it also re-introduces the original problem of json.Unmarshal not being able to unmarshal into a non-empty interface type. To fix that you can embed the new type in another temporary struct that has a field with the same json tag as the problematic field which will cause it to be "overshadowed" while json.Unmarshal is doing its work.
type SingleKey struct {
FQDN string `json:"fqdn"`
Address string `json:"address"`
Nonce int64 `json:"nonce"`
Challenge []byte `json:"challenge"`
NetworkID string `json:"network_id"`
Type string `json:"type"`
VerifyingKey PublicKey `json:"verifying_key"`
Signature []byte `json:"signature"`
}
func (s *SingleKey) UnmarshalJSON(data []byte) error {
type _SingleKey SingleKey
var temp struct {
RawKey json.RawMessage `json:"verifying_key"`
_SingleKey
}
if err := json.Unmarshal(data, &temp); err != nil {
return err
}
*s = SingleKey(temp._SingleKey)
switch s.Type {
case "verifying_key":
s.VerifyingKey = &PublicKeyImpl{}
// other cases ...
}
return json.Unmarshal([]byte(temp.RawKey), s.VerifyingKey)
}
https://play.golang.org/p/L3gdQZF47uN
Looking at what you've done in your custom unmarshalling function, you seem to be passing in a map with the name of fields as index, and the reflect.Type you want to unmarshal said value into. That, to me, suggests that the keys might be different for different payloads, but that each key has a distinct type associated with it. You can perfectly handle data like this with a simple wrapper type:
type WrappedSingleKey struct {
FQDN string `json:"fqdn"`
Address string `json:"address"`
Nonce int64 `json:"nonce"`
Challenge []byte `json:"challenge"`
NetworkID string `json:"network_id"`
Type string `json:"type"`
VerifyingKey json.RawMessage `json:"verifying_key"`
OtherKey json.RawMessage `json:"other_key"`
Signature []byte `json:"signature"`
}
type SingleKey struct {
FQDN string `json:"fqdn"`
Address string `json:"address"`
Nonce int64 `json:"nonce"`
Challenge []byte `json:"challenge"`
NetworkID string `json:"network_id"`
Type string `json:"type"`
VerifyingKey *PublicKey `json:"verifying_key,omitempty"`
OtherType *OtherKey `json:"other_key,omitempty"`
Signature []byte `json:"signature"`
}
So I've changed the type of your VerifyingKey field to a json.RawMessage. That's basically telling json.Unmarshal to leave that as raw JSON input. For every custom/optional field, add a corresponding RawMessage field.
In the unwrapped type, I've changed VerifyingKey to a pointer and added the omitempty bit to the tag. That's just to accomodate mutliple types, and not have to worry about custom marshalling to avoid empty fields, like the included OtherType field I have. To get what you need, then:
func (s *SingleKey) UnmarshalJSON(data []byte) error {
w := WrappedSingleKey{} // create wrapped instance
if err := json.Unmarshal(data, &w); err != nil {
return err
}
switch w.Type {
case "verifying_key":
var pk PublicKey
if err := json.Unmarshal([]byte(w.VerifyingKey), &pk); err != nil {
return err
}
s.VerifyingKey = &pk // assign
case "other_key":
var ok OtherKey
if err := json.Unmarshal([]byte(w.OtherKey), &ok); err != nil {
return err
}
s.OtherKey = &ok
}
// copy over the fields that didn't require anything special
s.FQDN = w.FQDN
s.Address = w.Address
}
This is a fairly simple approach, does away with the reflection, tons of functions, and is quite commonly used. It's something that lends itself quite well to code generation, too. The individual assignment of the fields is a bit tedious, though. You might think that you can solve that by embedding the SingleKey type into the wrapper, but be careful: this will recursively call your custom unmarshaller function.
You could, for example, update all the fields in the WRapped type to be pointers, and have them point to fields on your actual type. That does away with the manual copying of fields... It's up to you, really.
Note
I didn't test this code, just wrote it as I went along. It's something I've used in the past, and I believe what I wrote here should work, but no guarantees (as in: you might need to debug it a bit)

Unmarshal Inconsistent JSON in Go

I'm working with JSON that returns three different object types 'items','categories' and 'modifiers'. An example of the JSON can be viewed here. I created models for the three types of objects. But when I unmarshal I have selected one of the types to unmarshal the entire JSON to.(I know this cant be the correct way...) I then try to parse out the different items depending on what their type is identified as in the json field 'Type' and then append that object to a slice of the proper type. I am having errors because I don't know how to unmarshal JSON that has different types in it that have different fields.
What is the proper method to unmarshal JSON that contains different objects, each with their own respective fields?
Is the solution to create a "super model" which contains all possible fields and then unmarshal to that?
I'm still fairly new and would appreciate any advice. Thanks!
If you implement json.Unmarshaler, you can define a struct that parses each item type into it's relevant struct.
Example:
// Dynamic represents an item of any type.
type Dynamic struct {
Value interface{}
}
// UnmarshalJSON is called by the json package when we ask it to
// parse something into Dynamic.
func (d *Dynamic) UnmarshalJSON(data []byte) error {
// Parse only the "type" field first.
var meta struct {
Type string
}
if err := json.Unmarshal(data, &meta); err != nil {
return err
}
// Determine which struct to unmarshal into according to "type".
switch meta.Type {
case "product":
d.Value = &Product{}
case "post":
d.Value = &Post{}
default:
return fmt.Errorf("%q is an invalid item type", meta.Type)
}
return json.Unmarshal(data, d.Value)
}
// Product and Post are structs representing two different item types.
type Product struct {
Name string
Price int
}
type Post struct {
Title string
Content string
}
Usage:
func main() {
// Parse a JSON item into Dynamic.
input := `{
"type": "product",
"name": "iPhone",
"price": 1000
}`
var dynamic Dynamic
if err := json.Unmarshal([]byte(input), &dynamic); err != nil {
log.Fatal(err)
}
// Type switch on dynamic.Value to get the parsed struct.
// See https://tour.golang.org/methods/16
switch dynamic.Value.(type) {
case *Product:
log.Println("got a product:", dynamic.Value)
case *Post:
log.Println("got a product:", dynamic.Value)
}
}
Output:
2009/11/10 23:00:00 got a product: &{iPhone 1000}
Try it in the Go Playground.
Tip: if you have a list of dynamic objects, just parse into a slice of Dynamic:
var items []Dynamic
json.Unmarshal(`[{...}, {...}]`, &items)
Example output:
[&{iPhone 1000} &{A Good Post Lorem ipsum...}]
I think https://github.com/mitchellh/mapstructure also fits into your use case.

UnmarshalJSON on struct containing interface list

I would like to UnmarshalJSON a struct containing an interface as follows:
type Filterer interface {
Filter(s string) error
}
type FieldFilter struct {
Key string
Val string
}
func (ff *FieldFilter) Filter(s string) error {
// Do something
}
type Test struct {
Name string
Filters []Filterer
}
My idea was to send a json like so:
{
"Name": "testing",
"Filters": [
{
"FieldFilter": {
"Key": "key",
"Val": "val"
}
}
]
}
However, when sending this json to the unmarshaler, the following exception returns: json: cannot unmarshal object into Go struct field Test.Filters of type Filterer
I understand the problem fully, but do not know how to approach this problem wisely. Looking for advice on an idiomatic way to solving this problem in go.
Following my own question, I researched how one could implement UnmarshalJSON for interface lists. Ultimately this led me to publish a blog post on how to do this properly. Basically there are 2 main solutions:
Parse the required JSON string into a map[string]*json.RawMessage and work your way from there.
Make an alias for the interface list and implement UnmarshalJSON for that alias. However, you'll still need to work with map[string]*json.RawMessage and some manual work. Nothing comes without a price!
I highly suggest taking the seconds approach. While these two solutions may result in the same amount of code lines, taking advantage of type aliasing and being less dependent on json.RawMessage types will make a more easy to manage code, especially when it is required to support multiple interfaces on the UnmarshalJSON implementation
To directly answer the question, start with making a type alias for the interface list:
type Filterers []Filterer
Now continue with implementing the decoding of the JSON:
func (f *Filterers) UnmarshalJSON(b []byte) error {
var FilterFields map[string]*json.RawMessage
if err := json.Unmarshal(b, &FilterFields); err != nil {
return err
}
for LFKey, LFValue := range FilterFields {
if LFKey == "FieldFilter" {
var MyFieldFilters []*json.RawMessage
if err := json.Unmarshal(*LFValue, &MyFieldFilters); err != nil {
return err
}
for _, MyFieldFilter := range MyFieldFilters {
var filter FieldFilter
if err := json.Unmarshal(*MyFieldFilter, &filter); err != nil {
return err
}
*f = append(*f, &filter)
}
}
}
return nil
}
A detailed explanation (with some examples and a full working code snippets) of the second approach is available on my own blog
There is no way for Unmarshal to know what type it should use. The only case where it can just "make something up" is if it's asked to unmarshal into an interface{}, in which case it will use the rules in the documentation. Since none of those types can be put into a []Filterer, it cannot unmarshal that field. If you want to unmarshal into a struct type, you must specify the field to be of that type.
You can always unmarshal into an intermediate struct or map type, and then do your own conversion from that into whatever types you want.

Go: decoding json with one set of json tags, and encoding to a different set of json tags

I have an application that consumes data from a third-party api. I need to decode the json into a struct, which requires the struct to have json tags of the "incoming" json fields. The outgoing json fields have a different naming convention, so I need different json tags for the encoding.
I will have to do this with many different structs, and each struct might have many fields.
What is the best way to accomplish this without repeating a lot of code?
Example Structs:
// incoming "schema" field names
type AccountIn struct {
OpenDate string `json:"accountStartDate"`
CloseDate string `json:"cancelDate"`
}
// outgoing "schema" field names
type AccountOut struct {
OpenDate string `json:"openDate"`
CloseDate string `json:"closeDate"`
}
Maybe the coming change on Go 1.8 would help you, it will allow to 'cast' types even if its JSON tags definition is different: This https://play.golang.org/p/Xbsoa8SsEk works as expected on 1.8beta, I guess this would simplify your current solution
A bit an uncommon but probably quite well working method would be to use a intermediate format so u can use different readers and writers and therefore different tags. For example https://github.com/mitchellh/mapstructure which allows to convert a nested map structure into struct
types. Pretty similar like json unmarshal, just from a map.
// incoming "schema" field names
type AccountIn struct {
OpenDate string `mapstructure:"accountStartDate" json:"openDate"`
CloseDate string `mapstructure:"cancelDate" json:"closeDate"`
}
// from json to map with no name changes
temporaryMap := map[string]interface{}{}
err := json.Unmarshal(jsonBlob, &temporaryMap)
// from map to structs using mapstructure tags
accountIn := &AccountIn{}
mapstructure.Decode(temporaryMap, accountIn)
Later when writing (or reading) u will use directly the json functions which will then use the json tags.
If it's acceptable to take another round trip through json.Unmarshal and json.Marshal, and you don't have any ambiguous field names within your various types, you could translate all the json keys in one pass by unmarshaling into the generic structures used by the json package:
// map incoming to outgoing json identifiers
var translation = map[string]string{
"accountStartDate": "openDate",
"cancelDate": "closeDate",
}
func translateJS(js []byte) ([]byte, error) {
var m map[string]interface{}
if err := json.Unmarshal(js, &m); err != nil {
return nil, err
}
translateKeys(m)
return json.MarshalIndent(m, "", " ")
}
func translateKeys(m map[string]interface{}) {
for _, v := range m {
if v, ok := v.(map[string]interface{}); ok {
translateKeys(v)
}
}
keys := make([]string, 0, len(m))
for k := range m {
keys = append(keys, k)
}
for _, k := range keys {
if newKey, ok := translation[k]; ok {
m[newKey] = m[k]
delete(m, k)
}
}
}
https://play.golang.org/p/nXmWlj7qH9
This might be a Naive Approach but is fairly easy to implement:-
func ConvertAccountInToAccountOut(AccountIn incoming) (AccountOut outcoming){
var outcoming AccountOut
outcoming.OpenDate = incoming.OpenDate
outcoming.CloseDate = incoming.CloseDate
return outcoming
}
var IncomingJSONData AccountIn
resp := getJSONDataFromSource() // Some method that gives you the Input JSON
err1 := json.UnMarshall(resp,&IncomingJSONData)
OutGoingJSONData := ConvertAccountInToAccountOut(IncomingJSONData)
if err1 != nil {
fmt.Println("Error in UnMarshalling JSON ",err1)
}
fmt.Println("Outgoing JSON Data: ",OutGoingJSONData)

How do I make use of an arbitrary JSON object in golang? [duplicate]

Scenario:
Consider the following is the JSON :
{
"Bangalore_City": "35_Temperature",
"NewYork_City": "31_Temperature",
"Copenhagen_City": "29_Temperature"
}
If you notice, the data is structured in such a way that there is no hard-coded keys mentioning City/Temperature its basically just values.
Issue: I am not able to parse any JSON which is dynamic.
Question: Could anyone have found solution for this kind of JSON parsing? I tried go-simplejson, gabs & default encoding/json but no luck.
Note:
The above JSON is just for sample. And there are lot of applications which are using the current API, So I do not want to change how the data is structured. I mean I can't change to something as follows:
[{
"City_Name":"Bangalore",
"Temperature": "35"
},...]
Then I can define struct
type TempData struct {
City_Name string
Temperature string
}
You can unmarshal into a map[string]string for example:
m := map[string]string{}
err := json.Unmarshal([]byte(input), &m)
if err != nil {
panic(err)
}
fmt.Println(m)
Output (wrapped):
map[Bangalore_City:35_Temperature NewYork_City:31_Temperature
Copenhagen_City:29_Temperature]
Try it on the Go Playground.
This way no matter what the keys or values are, you will have all pairs in a map which you can print or loop over.
Also note that although your example contained only string values, but if the value type is varying (e.g. string, numbers etc.), you may use interface{} for the value type, in which case your map would be of type map[string]interface{}.
Also note that I created a library to easily work with such dynamic objects which may be a great help in these cases: github.com/icza/dyno.
Standard encoding/json is good for the majority of use cases, but it may be quite slow comparing to alternative solutions. If you need performance, try using fastjson. It parses arbitrary JSONs without the need for creating structs or maps matching the JSON schema.
See the example code below. It iterates over all the (key, value) pairs of the JSON object:
var p fastjson.Parser
v, err := p.Parse(input)
if err != nil {
log.Fatal(err)
}
// Visit all the items in the top object
v.GetObject().Visit(func(k []byte, v *fastjson.Value) {
fmt.Printf("key=%s, value=%s\n", k, v)
// for nested objects call Visit again
if string(k) == "nested" {
v.GetObject().Visit(func(k []byte, v *fastjson.Value) {
fmt.Printf("nested key=%s, value=%s\n", k, v)
})
}
})
Just to add a general answer to how any valid JSON can be parsed; var m interface{} works for all types. That includes map (which OP asked for) arrays, strings, numbers and nested structures.
var m interface{}
err := json.Unmarshal([]byte(input), &m)
if err != nil {
panic(err)
}
fmt.Println(m)
Also consider using gabs package https://github.com/Jeffail/gabs
"Gabs is a small utility for dealing with dynamic or unknown JSON structures in Go"