Big O complexity of loop with two independent inner loops - language-agnostic

I have a function that depends on three variables, T, N, and M. The loop is the following:
for each t from 0 to T {
for each n from 0 to N {
process(n,t);
}
for each m from 0 to M {
process(m,t);
}
}
What would be the big-O run-time complexity of this? I am thinking O(T*Max(n,m)) but is this standard? Thanks!

One way to analyze this is to look at the total amount of work being done across all iterations of the loop by determining how many times the outer loop executes and multiplying it by the amount of work done by the body of the loop. To do this, we'll work inside-out.
Starting with the inside, note that the first loop runs O(N) times, and does some amount of work on each iteration (I'll assume that it's O(1) work, though this analysis can be modified in case that's not true). Consequently, this loop does O(N) work. The second loop, similarly, does O(M) work. Thus the total amount of work done by the body of the loop is O(M + N). Since the top-level loop runs O(T) times, each iteration doing O(M + N) work, the total amount of work done is O(T(M + N)) = O(TM + TN).
Your claim that this is equal to O(T max{M, N}) is also correct. One way to see this is as follows: note that N = O(max{M, N}) and M = O(max{M, N}), and therefore we have that
O(TM + TN)
= O(T max{M, N} + T max{M, N})
= O(2T max{M, N})
= O(T max{M, N})
Hope this helps!

Yes, this is correct. And it's the same as O(T*(m+n)). Which is "standard" - hard to tell, but max seems to be used more often.

Related

Is using base case variable in a recursive function important?

I'm currently learning about recursion, it's pretty hard to understand. I found a very common example for it:
function factorial(N)
local Value
if N == 0 then
Value = 1
else
Value = N * factorial(N - 1)
end
return Value
end
print(factorial(3))
N == 0 is the base case. But when i changed it into N == 1, the result is still remains the same. (it will print 6).
Is using the base case important? (will it break or something?)
What's the difference between using N == 0 (base case) and N == 1?
That's just a coincidence, since 1 * 1 = 1, so it ends up working either way.
But consider the edge-case where N = 0, if you check for N == 1, then you'd go into the else branch and calculate 0 * factorial(-1), which would lead to an endless loop.
The same would happen in both cases if you just called factorial(-1) directly, which is why you should either check for > 0 instead (effectively treating every negative value as 0 and returning 1, or add another if condition and raise an error when N is negative.
EDIT: As pointed out in another answer, your implementation is not tail-recursive, meaning it accumulates memory for every recursive functioncall until it finishes or runs out of memory.
You can make the function tail-recursive, which allows Lua to treat it pretty much like a normal loop that could run as long as it takes to calculate its result:
local function factorial(n, acc)
acc = acc or 1
if n <= 0 then
return acc
else
return factorial(n-1, acc*n)
end
return Value
end
print(factorial(3))
Note though, that in the case of factorial, it would take you way longer to run out of stack memory than to overflow Luas number data type at around 21!, so making it tail-recursive is really just a matter of training yourself to write better code.
As the above answer and comments have pointed out, it is essential to have a base-case in a recursive function; otherwise, one ends up with an infinite loop.
Also, in the case of your factorial function, it is probably more efficient to use a helper function to perform the recursion, so as to take advantage of Lua's tail-call optimizations. Since Lua conveniently allows for local functions, you can define a helper within the scope of your factorial function.
Note that this example is not meant to handle the factorials of negative numbers.
-- Requires: n is an integer greater than or equal to 0.
-- Effects : returns the factorial of n.
function fact(n)
-- Local function that will actually perform the recursion.
local function fact_helper(n, i)
-- This is the base case.
if (i == 1) then
return n
end
-- Take advantage of tail calls.
return fact_helper(n * i, i - 1)
end
-- Check for edge cases, such as fact(0) and fact(1).
if ((n == 0) or (n == 1)) then
return 1
end
return fact_helper(n, n - 1)
end

Time complexity of this function?

algo(n)
for i in 0 to n {
for 0 to 8^i {
}
}
for i to 8^d {
}
Any kind of analysis or information about the time complexity of this algorithm will be usefull. Worst case, best case, lower/upper bounds, theta/omega/big-o, recurrence relation....etc.
Your algorithm runs in exponential time (T ∈ Θ(c^n), c>1). You can analyse the number of iterations of the inner for loop (... for 0 to 8^i) using Sigma notation:
Since your algorithm is in Θ(8^n), it is also in O(8^n) (upper asymptotic bound) and Ω(8^n) (lower asymptotic bound).
The above analysis is performed under the assumption that the d in the final for loop analysis is less or equal to n, in which case the nested two for loop prior to it will dominate (and hence we needn't analyze the last non-dominant for loop explicitly).
algo(n) is basically made of two parts:
for i in 0 to n
for 0 to 8^i
and
for i to 8^d
Let's start with the first. Assuming each iteration of the inner loop takes constant time, it's complexity is C*8^i.
Now, if we sum it across possible values of i we get:
8^0 + 8^1 + 8^2 + .... + 8^n-1
This is sum of geometric series with a=1, r=8, and its sum is:
1 * (1-8 ^(n-1)) / (1-8) = 1 * (-1/7 + 8^(n-1)/7)
For n->infinity, this can be approximated as 8^(n-1)/7, and we can conclude the complexity is Θ(8^(n-1)/7) = Θ(8^n)
As for the 2nd part, it is pretty straight forward and is 8^d.
This gives total complexity of T(n) is in Θ(8^d + 8^n)

Composite trapezoid rule not running in Octave

I have the following code in Octave for implementing the composite trapezoid rule and for some reason the function only stalls whenever I execute it in Octave on f = #(x) x^2, a = 0, b = 4, TOL = 10^-6. Whenever I call trapezoid(f, a, b, TOL), nothing happens and I have to exit the Terminal in order to do anything else in Octave. Here is the code:
% INPUTS
%
% f : a function
% a : starting point
% b : endpoint
% TOL : tolerance
function root = trapezoid(f, a, b, TOL)
disp('test');
max_iterations = 10000;
disp(max_iterations);
count = 1;
disp(count);
initial = (b-a)*(f(b) + f(a))/2;
while count < max_iterations
disp(initial);
trap_0 = initial;
trap_1 = 0;
trap_1_midpoints = a:(0.5^count):b;
for i = 1:(length(trap_1_midpoints)-1)
trap_1 = trap_1 + (trap_1_midpoints(i+1) - trap_1_midpoints(i))*(f(trap_1_midpoints(i+1) + f(trap_1_midpoints(i))))/2;
endfor
if abs(trap_0 - trap_1) < TOL
root = trap_1;
return;
endif
intial = trap_1;
count = count + 1;
disp(count);
endwhile
disp(['Process ended after ' num2str(max_iterations), ' iterations.']);
I have tried your function in Matlab.
Your code is not stalling. It is rather that the size of trap_1_midpoints increases exponentionaly. With that the computation time of trap_1 increases also exponentionaly. This is what you experience as stalling.
I also found a possible bug in your code. I guess the line after the if clause should be initial = trap_1. Check the missing 'i'.
With that, your code still takes forever, but if you increase the tolerance (e.g. to a value of 1) your code return.
You could try to vectorize the for loop for speed up.
Edit: I think inside your for loop, a ) is missing after f(trap_1_midpoints(i+1).
After count=52 or so, the arithmetic sequence trap_1_midpoints is no longer representable in any meaningful fashion in floating point numbers. After count=1075 or similar, the step size is no longer representable as a positive floating point double number. That all is to say, the bound max_iterations = 10000 is ludicrous. As explained below, all computations after count=20 are meaningless.
The theoretical error for stepsize h is O(T·h^2). There is a numerical error accumulation in the summation of O(T/h) numbers that is of that size, i.e., O(mu/h) with mu=1ulp=2^(-52). Which in total means that the lowest error of the numerical integration can be expected around h=mu^(1/3), for double numbers thus h=1e-5 or in the algorithm count=17. This may vary with interval length and how smooth or wavy the function is.
One can expect the behavior that the error divides by four while halving the step size only for step sizes above this boundary 1e-5. This also means that abs(trap_0 - trap_1) is a reliable measure for the error of trap_0 (and abs(trap_0 - trap_1)/3 for trap_1) only inside this range of step sizes.
The error bound TOL=1e-6 should be met for about h=1e-3, which corresponds to count=10. If the recursion does not stop for count = 14 (which should give an error smaller than 1e-8) then the method is not accurately implemented.

Call function for all elements in an array

Let's say I have a function, like:
function [result] = Square( x )
result = x * x;
end
And I have an array like the following,
x = 0:0.1:1;
I want to have an y array, which stores the squares of x's using my Square function. Sure, one way would be the following,
y = zeros(1,10);
for i = 1:10
y(i) = Square(x(i));
end
However, I guess there should be a more elegant way of doing it. I tried some of my insights and made some search, however couldn't find any solution. Any suggestions?
For the example you give:
y = x.^2; % or
y = x.*x;
in which .* and .^ are the element-wise versions of * and ^. This is the simplest, fastest way there is.
More general:
y = arrayfun(#Square, x);
which can be elegant, but it's usually pretty slow compared to
y = zeros(size(x));
for ii = 1:numel(x)
y(ii) = Square(x(ii)); end
I'd actually advise to stay away from arrayfun until profiling has showed that it is faster than a plain loop. Which will be seldom, if ever.
In new Matlab versions (R2008 and up), the JIT accelerates loops so effectively that things like arrayfun might actually disappear in a future release.
As an aside: note that I've used ii instead of i as the loop variable. In Matlab, i and j are built-in names for the imaginary unit. If you use it as a variable name, you'll lose some performance due to the necessary name resolution required. Using anything other than i or j will prevent that.
You want arrayfun.
arrayfun(#Square, x)
See help arrayfun
(tested only in GNU Octave, I do not have MATLAB)
Have you considered the element-by-element operator .*?
See the documentation for arithmetic operators.
I am going to assume that you will not be doing something as simple as a square operation and what you are trying to do is not already vectorised in MATLAB.
It is better to call the function once, and do the loop in the function. As the number of elements increase, you will notice significant increase in operation time.
Let our functions be:
function result = getSquare(x)
result = x*x; % I did not use .* on purpose
end
function result = getSquareVec(x)
result = zeros(1,numel(x));
for idx = 1:numel(x)
result(:,idx) = x(idx)*x(idx);
end
end
And let's call them from a script:
y = 1:10000;
tic;
for idx = 1:numel(y)
res = getSquare(y(idx));
end
toc
tic;
res = getSquareVec(y);
toc
I ran the code a couple of times and turns out calling the function only once is at least twice as fast.
Elapsed time is 0.020524 seconds.
Elapsed time is 0.008560 seconds.
Elapsed time is 0.019019 seconds.
Elapsed time is 0.007661 seconds.
Elapsed time is 0.022532 seconds.
Elapsed time is 0.006731 seconds.
Elapsed time is 0.023051 seconds.
Elapsed time is 0.005951 seconds.

Translation from Complex-FFT to Finite-Field-FFT

Good afternoon!
I am trying to develop an NTT algorithm based on the naive recursive FFT implementation I already have.
Consider the following code (coefficients' length, let it be m, is an exact power of two):
/// <summary>
/// Calculates the result of the recursive Number Theoretic Transform.
/// </summary>
/// <param name="coefficients"></param>
/// <returns></returns>
private static BigInteger[] Recursive_NTT_Skeleton(
IList<BigInteger> coefficients,
IList<BigInteger> rootsOfUnity,
int step,
int offset)
{
// Calculate the length of vectors at the current step of recursion.
// -
int n = coefficients.Count / step - offset / step;
if (n == 1)
{
return new BigInteger[] { coefficients[offset] };
}
BigInteger[] results = new BigInteger[n];
IList<BigInteger> resultEvens =
Recursive_NTT_Skeleton(coefficients, rootsOfUnity, step * 2, offset);
IList<BigInteger> resultOdds =
Recursive_NTT_Skeleton(coefficients, rootsOfUnity, step * 2, offset + step);
for (int k = 0; k < n / 2; k++)
{
BigInteger bfly = (rootsOfUnity[k * step] * resultOdds[k]) % NTT_MODULUS;
results[k] = (resultEvens[k] + bfly) % NTT_MODULUS;
results[k + n / 2] = (resultEvens[k] - bfly) % NTT_MODULUS;
}
return results;
}
It worked for complex FFT (replace BigInteger with a complex numeric type (I had my own)). It doesn't work here even though I changed the procedure of finding the primitive roots of unity appropriately.
Supposedly, the problem is this: rootsOfUnity parameter passed originally contained only the first half of m-th complex roots of unity in this order:
omega^0 = 1, omega^1, omega^2, ..., omega^(n/2)
It was enough, because on these three lines of code:
BigInteger bfly = (rootsOfUnity[k * step] * resultOdds[k]) % NTT_MODULUS;
results[k] = (resultEvens[k] + bfly) % NTT_MODULUS;
results[k + n / 2] = (resultEvens[k] - bfly) % NTT_MODULUS;
I originally made use of the fact, that at any level of recursion (for any n and i), the complex root of unity -omega^(i) = omega^(i + n/2).
However, that property obviously doesn't hold in finite fields. But is there any analogue of it which would allow me to still compute only the first half of the roots?
Or should I extend the cycle from n/2 to n and pre-compute all the m-th roots of unity?
Maybe there are other problems with this code?..
Thank you very much in advance!
I recently wanted to implement NTT for fast multiplication instead of DFFT too. Read a lot of confusing things, different letters everywhere and no simple solution, and also my finite fields knowledge is rusty , but today i finally got it right (after 2 days of trying and analog-ing with DFT coefficients) so here are my insights for NTT:
Computation
X(i) = sum(j=0..n-1) of ( Wn^(i*j)*x(i) );
where X[] is NTT transformed x[] of size n where Wn is the NTT basis. All computations are on integer modulo arithmetics mod p no complex numbers anywhere.
Important values
Wn = r ^ L mod p is basis for NTT
Wn = r ^ (p-1-L) mod p is basis for INTT
Rn = n ^ (p-2) mod p is scaling multiplicative constant for INTT ~(1/n)
p is prime that p mod n == 1 and p>max'
max is max value of x[i] for NTT or X[i] for INTT
r = <1,p)
L = <1,p) and also divides p-1
r,L must be combined so r^(L*i) mod p == 1 if i=0 or i=n
r,L must be combined so r^(L*i) mod p != 1 if 0 < i < n
max' is the sub-result max value and depends on n and type of computation. For single (I)NTT it is max' = n*max but for convolution of two n sized vectors it is max' = n*max*max etc. See Implementing FFT over finite fields for more info about it.
functional combination of r,L,p is different for different n
this is important, you have to recompute or select parameters from table before each NTT layer (n is always half of the previous recursion).
Here is my C++ code that finds the r,L,p parameters (needs modular arithmetics which is not included, you can replace it with (a+b)%c,(a-b)%c,(a*b)%c,... but in that case beware of overflows especial for modpow and modmul) The code is not optimized yet there are ways to speed it up considerably. Also prime table is fairly limited so either use SoE or any other algo to obtain primes up to max' in order to work safely.
DWORD _arithmetics_primes[]=
{
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,
179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,
419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,
661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,
947,953,967,971,977,983,991,997,1009,1013,1019,1021,1031,1033,1039,1049,1051,1061,1063,1069,1087,1091,1093,1097,1103,1109,1117,1123,1129,1151,
0}; // end of table is 0, the more primes are there the bigger numbers and n can be used
// compute NTT consts W=r^L%p for n
int i,j,k,n=16;
long w,W,iW,p,r,L,l,e;
long max=81*n; // edit1: max num for NTT for my multiplication purposses
for (e=1,j=0;e;j++) // find prime p that p%n=1 AND p>max ... 9*9=81
{
p=_arithmetics_primes[j];
if (!p) break;
if ((p>max)&&(p%n==1))
for (r=2;r<p;r++) // check all r
{
for (l=1;l<p;l++)// all l that divide p-1
{
L=(p-1);
if (L%l!=0) continue;
L/=l;
W=modpow(r,L,p);
e=0;
for (w=1,i=0;i<=n;i++,w=modmul(w,W,p))
{
if ((i==0) &&(w!=1)) { e=1; break; }
if ((i==n) &&(w!=1)) { e=1; break; }
if ((i>0)&&(i<n)&&(w==1)) { e=1; break; }
}
if (!e) break;
}
if (!e) break;
}
}
if (e) { error; } // error no combination r,l,p for n found
W=modpow(r, L,p); // Wn for NTT
iW=modpow(r,p-1-L,p); // Wn for INTT
and here is my slow NTT and INTT implementations (i havent got to fast NTT,INTT yet) they are both tested with Schönhage–Strassen multiplication successfully.
//---------------------------------------------------------------------------
void NTT(long *dst,long *src,long n,long m,long w)
{
long i,j,wj,wi,a,n2=n>>1;
for (wj=1,j=0;j<n;j++)
{
a=0;
for (wi=1,i=0;i<n;i++)
{
a=modadd(a,modmul(wi,src[i],m),m);
wi=modmul(wi,wj,m);
}
dst[j]=a;
wj=modmul(wj,w,m);
}
}
//---------------------------------------------------------------------------
void INTT(long *dst,long *src,long n,long m,long w)
{
long i,j,wi=1,wj=1,rN,a,n2=n>>1;
rN=modpow(n,m-2,m);
for (wj=1,j=0;j<n;j++)
{
a=0;
for (wi=1,i=0;i<n;i++)
{
a=modadd(a,modmul(wi,src[i],m),m);
wi=modmul(wi,wj,m);
}
dst[j]=modmul(a,rN,m);
wj=modmul(wj,w,m);
}
}
//---------------------------------------------------------------------------
dst is destination array
src is source array
n is array size
m is modulus (p)
w is basis (Wn)
hope this helps to someone. If i forgot something please write ...
[edit1: fast NTT/INTT]
Finally I manage to get fast NTT/INTT to work. Was little bit more tricky than normal FFT:
//---------------------------------------------------------------------------
void _NFTT(long *dst,long *src,long n,long m,long w)
{
if (n<=1) { if (n==1) dst[0]=src[0]; return; }
long i,j,a0,a1,n2=n>>1,w2=modmul(w,w,m);
// reorder even,odd
for (i=0,j=0;i<n2;i++,j+=2) dst[i]=src[j];
for ( j=1;i<n ;i++,j+=2) dst[i]=src[j];
// recursion
_NFTT(src ,dst ,n2,m,w2); // even
_NFTT(src+n2,dst+n2,n2,m,w2); // odd
// restore results
for (w2=1,i=0,j=n2;i<n2;i++,j++,w2=modmul(w2,w,m))
{
a0=src[i];
a1=modmul(src[j],w2,m);
dst[i]=modadd(a0,a1,m);
dst[j]=modsub(a0,a1,m);
}
}
//---------------------------------------------------------------------------
void _INFTT(long *dst,long *src,long n,long m,long w)
{
long i,rN;
rN=modpow(n,m-2,m);
_NFTT(dst,src,n,m,w);
for (i=0;i<n;i++) dst[i]=modmul(dst[i],rN,m);
}
//---------------------------------------------------------------------------
[edit3]
I have optimized my code (3x times faster than code above),but still i am not satisfied with it so i started new question with it. There I have optimized my code even further (about 40x times faster than code above) so its almost the same speed as FFT on floating point of the same bit size. Link to it is here:
Modular arithmetics and NTT (finite field DFT) optimizations
To turn Cooley-Tukey (complex) FFT into modular arithmetic approach, i.e. NTT, you must replace complex definition for omega. For the approach to be purely recursive, you also need to recalculate omega for each level based on current signal size. This is possible because min. suitable modulus decreases as we move down in the call tree, so modulus used for root is suitable for lower layers. Additionally, as we are using same modulus, the same generator may be used as we move down the call tree. Also, for inverse transform, you should take additional step to take recalculated omega a and instead use as omega: b = a ^ -1 (via using inverse modulo operation). Specifically, b = invMod(a, N) s.t. b * a == 1 (mod N), where N is the chosen prime modulus.
Rewriting an expression involving omega by exploiting periodicity still works in modular arithmetic realm. You also need to find a way to determine the modulus (a prime) for the problem and a valid generator.
We note that your code works, though it is not a MWE. We extended it using common sense, and got correct result for a polynomial multiplication application. You just have to provide correct values of omega raised to certain powers.
While your code works, though, like from many other sources, you double spacing for each level. This does not lead to recursion that is as clean, though; this turns out to be identical to recalculating omega based on current signal size because the power for omega definition is inversely proportional to signal size. To reiterate: halving signal size is like squaring omega, which is like giving doubled powers for omega (which is what one would do for doubling of spacing). The nice thing about the approach that deals with recalculating of omega is that each subproblem is more cleanly complete in its own right.
There is a paper that shows some of the math for modular approach; it is a paper by Baktir and Sunar from 2006. See the paper at the end of this post.
You do not need to extend the cycle from n / 2 to n.
So, yes, some sources which say to just drop in a different omega definition for modular arithmetic approach are sweeping under the rug many details.
Another issue is that it is important to acknowledge that the signal size must be large enough if we are to not have overflow for result time-domain signal if we are performing convolution. Additionally, it may be useful to find certain implementations for exponentiation subject to modulus exist that are fast, even if the power is quite large.
References
Baktir and Sunar - Achieving efficient polynomial multiplication in Fermat fields using the fast Fourier transform (2006)
You must make sure that roots of unity actually exist. In R there are only 2 roots of unity: 1 and -1, since only for them x^n=1 can be true.
In C you have infinitely many roots of unity: w=exp(2*pi*i/N) is a primitive N-th roots of unity and all w^k for 0<=k
Now to your problem: you have to make sure the ring you're working in offers the same property: enough roots of unity.
Schönhage and Strassen (http://en.wikipedia.org/wiki/Sch%C3%B6nhage%E2%80%93Strassen_algorithm) use integers modulo 2^N+1. This ring has enough roots of unity. 2^N == -1 is a 2nd root of unity, 2^(N/2) is a 4th root of unity and so on. Furthermore, these roots of unity have the advantage that they are powers of two and can be implemented as binary shifts (with a modulo operation afterwards, which comes down to a add/subtract).
I think QuickMul (http://www.cs.nyu.edu/exact/doc/qmul.ps) works modulo 2^N-1.