One table with Nulls vs two tables - mysql

Let's say I have a simple situation. I have user table for my website and I need to place somewhere activation codes for email verification.
What is better option:
activation_code column in user table, which means I'll get NULLs or useless data when email is already verified. But on the other hand, I'm sure, I have only one code per user and one table less.
Separate table for codes. No useless data or NULLs. But an additional table for one column ( + user_id).
Because I try not to use any NULLs ( that's because I was taught so, not sure if rightly), I would prefer 2nd option. But I've seen first way in many web apps, so that's why I'm giving this question.

I would advocate for the separate table because in my opinion it models the data better. And it also allows you to generate multiple activation codes for the same user - this can come in handy!
On the other hand, I totally disagree with the practice of not using NULLs. I know some people advocate steering clear of them for reasons which can usually be attributed to laziness but the reality is that NULLs can be very useful in modeling data! They have a purpose which is to represent missing data or unknown values and they should definitely be used for this purpose!

Related

Many to many relationship with extra information

I'm having this Reddit like relationship shown as below. Basic idea is, each user can join many communities, and write many blogs in each community.
And there's community specific information about this user, like reputation etc. My question is, is it a good practice to put the extra information on the associative table (i.e. UserCommunities)? Why any why not?
Thanks!
There are two basic forces considered for relational database designs :
Reduce redundancy and dependency of data. (Normalization)
The query pattern of the application. (Use case/Scenarios)
The Normalization part is well documented. You can refer wiki or this for details on that.
You should definitely consider this if your concern is over the data growth or if you observe that changing one field value requires you to change multiple column values(data dependency).
The second part is more subjective to your requirement.
If your query pattern requires some data across queries and it is not very costly(space wise) to keep both data in same table, one can ignore/bend the normalization technique.
For your example:
If user table had data specific to user like their initials , address , preferences , then you can have it as separate table.
similarly for User Communities table , if apart from reputation it has data like number of posts, number of likes etc etc. It can/should be a different table
why not?
You can refer the normalization forms for the benefits. :)
But if your use case/query pattern is that "given a user and blog, tell me user's reputation" or something similar and there is no extra data, you can keep the reputation in the same table.
Why
It will simplify your queries . Instead of join across tables it will be straight forward query with less complexity.

(Somewhat) complicated database structure vs. simple — with null fields

I'm currently choosing between two different database designs. One complicated which separates data better then the more simple one. The more complicated design will require more complex queries, while the simpler one will have a couple of null fields.
Consider the examples below:
Complicated:
Simpler:
The above examples are for separating regular users and Facebook users (they will access the same data, eventually, but login differently). On the first example, the data is clearly separated. The second example is way simplier, but will have at least one null field per row. facebookUserId will be null if it's a normal user, while username and password will be null if it's a Facebook-user.
My question is: what's prefered? Pros/cons? Which one is easiest to maintain over time?
First, what Kirk said. It's a good summary of the likely consequences of each alternative design. Second, it's worth knowing what others have done with the same problem.
The case you outline is known in ER modeling circles as "ER specialization". ER specialization is just different wording for the concept of subclasses. The diagrams you present are two different ways of implementing subclasses in SQL tables. The first goes under the name "Class Table Inheritance". The second goes under the name "Single Table Inheritance".
If you do go with Class table inheritance, you will want to apply yet another technique, that goes under the name "shared primary key". In this technique, the id fields of facebookusers and normalusers will be copies of the id field from users. This has several advantages. It enforces the one-to-one nature of the relationship. It saves an extra foreign key in the subclass tables. It automatically provides the index needed to make the joins run faster. And it allows a simple easy join to put specialized data and generalized data together.
You can look up "ER specialization", "single-table-inheritance", "class-table-inheritance", and "shared-primary-key" as tags here in SO. Or you can search for the same topics out on the web. The first thing you will learn is what Kirk has summarized so well. Beyond that, you'll learn how to use each of the techniques.
Great question.
This applies to any abstraction you might choose to implement, whether in code or database. Would you write a separate class for the Facebook user and the 'normal' user, or would you handle the two cases in a single class?
The first option is the more complicated. Why is it complicated? Because it's more extensible. You could easily include additional authentication methods (a table for Twitter IDs, for example), or extend the Facebook table to include... some other facebook specific information. You have extracted the information specific to each authentication method into its own table, allowing each to stand alone. This is great!
The trade off is that it will take more effort to query, it will take more effort to select and insert, and it's likely to be messier. You don't want a dozen tables for a dozen different authentication methods. And you don't really want two tables for two authentication methods unless you're getting some benefit from it. Are you going to need this flexibility? Authentication methods are all similar - they'll have a username and password. This abstraction lets you store more method-specific information, but does that information exist?
Second option is just the reverse the first. Easier, but how will you handle future authentication methods and what if you need to add some authentication method specific information?
Personally I'd try to evaluate how important this authentication component is to the system. Remember YAGNI - you aren't gonna need it - and don't overdesign. Unless you need that extensibility that the first option provides, go with the second. You can always extract it at a later date if necessary.
This depends on the database you are using. For example Postgres has table inheritance that would be great for your example, have a look here:
http://www.postgresql.org/docs/9.1/static/tutorial-inheritance.html
Now if you do not have table inheritance you could still create views to simplify your queries, so the "complicated" example is a viable choice here.
Now if you have infinite time than I would go for the first one (for this one simple example and prefered with table inheritance).
However, this is making things more complicated and so will cost you more time to implement and maintain. If you have many table hierarchies like this it can also have a performance impact (as you have to join many tables). I once developed a database schema that made excessive use of such hierarchies (conceptually). We finally decided to keep the hierarchies conceptually but flatten the hierarchies in the implementation as it had gotten so complex that is was not maintainable anymore.
When you flatten the hierarchy you might consider not using null values, as this can also prove to make things a lot harder (alternatively you can use a -1 or something).
Hope these thoughts help you!
Warning bells are ringing loudly with the presence of two the very similar tables facebookusers and normalusers. What if you get a 3rd type? Or a 10th? This is insane,
There should be one user table with an attribute column to show the type of user. A user is a user.
Keep the data model as simple as you possibly can. Don't build it too much kung fu via data structure. Leave that for the application, which is far easier to alter than altering a database!
Let me dare suggest a third. You could introduce 1 (or 2) tables that will cater for extensibility. I personally try to avoid designs that will introduce (read: pollute) an entity model with non-uniformly applicable columns. Have the third table (after the fashion of the EAV model) contain a many-to-one relationship with your users table to cater for multiple/variable user related field.
I'm not sure what your current/short term needs are, but re-engineering your app to cater for maybe, twitter or linkedIn users might be painful. If you can abstract the content of the facebookUserId column into an attribute table like so
user_attr{
id PK
user_id FK
login_id
}
Now, the above definition is ambiguous enough to handle your current needs. If done right, the EAV should look more like this :
user_attr{
id PK
user_id FK
login_id
login_id_type FK
login_id_status //simple boolean flag to set the validity of a given login
}
Where login_id_type will be a foreign key to an attribute table listing the various login types you currently support. This gives you and your users flexibility in that your users can have multiple logins using different external services without you having to change much of your existing system

Database Design For Tournament Management Software

I'm currently designing a web application using php, javascript, and MySQL. I'm considering two options for the databases.
Having a master table for all the tournaments, with basic information stored there along with a tournament id. Then I would create divisions, brackets, matches, etc. tables with the tournament id appended to each table name. Then when accessing that tournament, I would simply do something like "SELECT * FROM BRACKETS_[insert tournamentID here]".
My other option is to just have generic brackets, divisions, matches, etc. tables with each record being linked to the appropriate tournament, (or matches to brackets, brackets to divisions etc.) by a foreign key in the appropriate column.
My concern with the first approach is that it's a bit too on the fly for me, and seems like the database could get messy very quickly. My concern with the second approach is performance. This program will hopefully have a national if not international reach, and I'm concerned with so many records in a single table, and with so many people possibly hitting it at the same time, it could cause problems.
I'm not a complete newb when it comes to database management; however, this is the first one I've done completely solo, so any and all help is appreciated. Thanks!
Do not create tables for each tournament. A table is a type of an entity, not an instance of an entity. Maintainability and scalability would be horrible if you mix up those concepts. You even say so yourself:
This program will hopefully have a national if not international reach, and I'm concerned with so many records in a single table, and with so many people possibly hitting it at the same time, it could cause problems.
How on Earth would you scale to that level if you need to create a whole table for each record?
Regarding the performance of your second approach, why are you concerned? Do you have specific metrics to back up those concerns? Relational databases tend to be very good at querying relational data. So keep your data relational. Don't try to be creative and undermine the design of the database technology you're using.
You've named a few types of entities:
Tournament
Division
Bracket
Match
Competitor
etc.
These sound like tables to me. Manage your indexes based on how you query the data (that is, don't over-index or you'll pay for it with inserts/updates/deletes). Normalize the data appropriately, de-normalize where audits and reporting are more prevalent, etc. If you're worried about performance then keep an eye on the query execution paths for the ways in which you access the data. Slight tweaks can make a big difference.
Don't pre-maturely optimize. It adds complexity without any actual reason.
First, find the entities that you will need to store; things like tournament, event, team, competitor, prize etc. Each of these entities will probably be tables.
It is standard practice to have a primary key for each of them. Sometimes there are columns (or group of columns) that uniquely identify a row, so you can use that as primary key. However, usually it's best just to have a column named ID or something similar of numeric type. It will be faster and easier for the RDBMS to create and use indexes for such columns.
Store the data where it belongs: I expect to see the date and time of an event in the events table, not in the prizes table.
Another crucial point is conforming to the First normal form, since that assures data atomicity. This is important because it will save you a lot of headache later on. By doing this correctly, you will also have the correct number of tables.
Last but not least: add relevant indexes to the columns that appear most often in queries. This will help a lot with performance. Don't worry about tables having too many rows, RDBMS-es these days handle table with hundreds of millions of rows, they're designed to be able to do that efficiently.
Beside compromising the quality and maintainability of your code (as others have pointed out), it's questionable whether you'd actually gain any performance either.
When you execute...
SELECT * FROM BRACKETS_XXX
...the DBMS needs to find the table whose name matches "BRACKETS_XXX" and that search is done in the DBMS'es data dictionary which itself is a bunch of tables. So, you are replacing a search within your tables with a search within data dictionary tables. You pay the price of the search either way.
(The dictionary tables may or may not be "real" tables, and may or may not have similar performance characteristics as real tables, but I bet these performance characteristics are unlikely to be better than "normal" tables for large numbers of rows. Also, performance of data dictionary is unlikely to be documented and you really shouldn't rely on undocumented features.)
Also, the DBMS would suddenly need to prepare many more SQL statements (since they are now different statements, referring to separate tables), which would present the additional pressure on performance.
The idea of creating new tables whenever a new instance of an item appears is really bad, sorry.
A (surely incomplete) list of why this is a bad idea:
Your code will need to automatically add tables whenever a new Division or whatever is created. This is definitely a bad practice and should be limited to extremely niche cases - which yours definitely isn't.
In case you decide to add or revise a table structure later (e.g. adding a new field) you will have to add it to hundreds of tables which will be cumbersome, error prone and a big maintenance headache
A RDBMS is built to scale in terms of rows, not tables and associated (indexes, triggers, constraints) elements - so you are working against your tool and not with it.
THIS ONE SHOULD BE THE REAL CLINCHER - how do you plan to handle requests like "list all matches which were played on a Sunday" or "find the most recent three brackets where Frank Perry was active"?
You say:
I'm not a complete newb when it comes to database management; however, this is the first one I've done completely solo...
Can you remember another project where tables were cloned whenever a new set was required? If yes, didn't you notice some problems with that approach? If not, have you considered that this is precisely what a DBA would never ever do for any reason whatsoever?

How many database table columns are too many?

I've taken over development on a project that has a user table with over 30 columns. And the bad thing is that changes and additions to the columns keep happening.
This isn't right.
Should I push to have the extra fields moved into a second table as values and create a third table that stores those column names?
user
id
email
user_field
id
name
user_value
id
user_field_id
user_id
value
Do not go the key / value route. SQL isn't designed to handle it and it'll make getting actual data out of your database an exercise in self torture. (Examples: Indexes don't work well. Joins are lots of fun when you have to join just to get the data you're joining on. It goes on.)
As long as the data is normalized to a decent level you don't have too many columns.
EDIT: To be clear, there are some problems that can only be solved with the key / value route. "Too many columns" isn't one of them.
It's hard to say how many is too many. It's really very subjective. I think the question you should be asking is not, "Are there too many columns?", but, rather, "Do these columns belong here?" What I mean by that is if there are columns in your User table that aren't necessarily properties of the user, then they may not belong. For example, if you've got a bunch of columns that sum up the user's address, then maybe you pull those out into an Address table with an FK into User.
I would avoid using key/value tables if possible. It may seem like an easy way to make things extensible, but it's really just a pain in the long run. If you find that your schema is changing very consistently you may want to consider putting some kind of change control in place to vet changes to only those that are necessary, or move to another technology that better supports schema-less storage like NoSQL with MongoDB or CouchDB.
This is often known as EAV, and whether this is right for your database depends on a lot of factors:
http://en.wikipedia.org/wiki/Entity-attribute-value_model
http://karwin.blogspot.com/2009/05/eav-fail.html
http://www.slideshare.net/billkarwin/sql-antipatterns-strike-back
Too many columns is not really one of them.
Changes and additions to a table are not a bad thing if it means they accurately reflect changes in your business requirements.
If the changes and additons are continual then perhaps you need to sit down and do a better job of defining the requirements. Now I can't say if 30 columns is toomany becasue it depends on how wide they are and whether thay are something that shouldbe moved to a related table. For instnce if you have fields like phone1, phone2, phone 3, youo have a mess that needs to be split out into a related table for user_phone. Or if all your columns are wide (and your overall table width is wider than the pages the databases stores data in) and some are not that frequently needed for your queries, they might be better in a related table that has a one-to-one relationship. I would probably not do this unless you have an actual performance problem though.
However, of all the possible choices, the EAV model you described is the worst one both from a maintainabilty and performance viewpoint. It is very hard to write decent queries against this model.
This really depends on what you're trying to do.

Which is more efficient: Multiple MySQL tables or one large table?

I store various user details in my MySQL database. Originally it was set up in various tables meaning data is linked with UserIds and outputting via sometimes complicated calls to display and manipulate the data as required. Setting up a new system, it almost makes sense to combine all of these tables into one big table of related content.
Is this going to be a help or hindrance?
Speed considerations in calling, updating or searching/manipulating?
Here's an example of some of my table structure(s):
users - UserId, username, email, encrypted password, registration date, ip
user_details - cookie data, name, address, contact details, affiliation, demographic data
user_activity - contributions, last online, last viewing
user_settings - profile display settings
user_interests - advertising targetable variables
user_levels - access rights
user_stats - hits, tallies
Edit: I've upvoted all answers so far, they all have elements that essentially answer my question.
Most of the tables have a 1:1 relationship which was the main reason for denormalising them.
Are there going to be issues if the table spans across 100+ columns when a large portion of these cells are likely to remain empty?
Multiple tables help in the following ways / cases:
(a) if different people are going to be developing applications involving different tables, it makes sense to split them.
(b) If you want to give different kind of authorities to different people for different part of the data collection, it may be more convenient to split them. (Of course, you can look at defining views and giving authorization on them appropriately).
(c) For moving data to different places, especially during development, it may make sense to use tables resulting in smaller file sizes.
(d) Smaller foot print may give comfort while you develop applications on specific data collection of a single entity.
(e) It is a possibility: what you thought as a single value data may turn out to be really multiple values in future. e.g. credit limit is a single value field as of now. But tomorrow, you may decide to change the values as (date from, date to, credit value). Split tables might come handy now.
My vote would be for multiple tables - with data appropriately split.
Good luck.
Combining the tables is called denormalizing.
It may (or may not) help to make some queries (which make lots of JOINs) to run faster at the expense of creating a maintenance hell.
MySQL is capable of using only JOIN method, namely NESTED LOOPS.
This means that for each record in the driving table, MySQL locates a matching record in the driven table in a loop.
Locating a record is quite a costly operation which may take dozens times as long as the pure record scanning.
Moving all your records into one table will help you to get rid of this operation, but the table itself grows larger, and the table scan takes longer.
If you have lots of records in other tables, then increase in the table scan can overweight benefits of the records being scanned sequentially.
Maintenance hell, on the other hand, is guaranteed.
Are all of them 1:1 relationships? I mean, if a user could belong to, say, different user levels, or if the users interests are represented as several records in the user interests table, then merging those tables would be out of the question immediately.
Regarding previous answers about normalization, it must be said that the database normalization rules have completely disregarded performance, and is only looking at what is a neat database design. That is often what you want to achieve, but there are times when it makes sense to actively denormalize in pursuit of performance.
All in all, I'd say the question comes down to how many fields there are in the tables, and how often they are accessed. If user activity is often not very interesting, then it might just be a nuisance to always have it on the same record, for performance and maintenance reasons. If some data, like settings, say, are accessed very often, but simply contains too many fields, it might also not be convenient to merge the tables. If you're only interested in the performance gain, you might consider other approaches, such as keeping the settings separate, but saving them in a session variable of their own so that you don't have to query the database for them very often.
Do all of those tables have a 1-to-1 relationship? For example, will each user row only have one corresponding row in user_stats or user_levels? If so, it might make sense to combine them into one table. If the relationship is not 1 to 1 though, it probably wouldn't make sense to combine (denormalize) them.
Having them in separate tables vs. one table is probably going to have little effect on performance though unless you have hundreds of thousands or millions of user records. The only real gain you'll get is from simplifying your queries by combining them.
ETA:
If your concern is about having too many columns, then think about what stuff you typically use together and combine those, leaving the rest in a separate table (or several separate tables if needed).
If you look at the way you use the data, my guess is that you'll find that something like 80% of your queries use 20% of that data with the remaining 80% of the data being used only occasionally. Combine that frequently used 20% into one table, and leave the 80% that you don't often use in separate tables and you'll probably have a good compromise.
Creating one massive table goes against relational database principals. I wouldn't combine all them into one table. Your going to get multiple instances of repeated data. If your user has three interests for example, you will have 3 rows, with the same user data in just to store the three different interests. Definatly go for the multiple 'normalized' table approach. See this Wiki page for database normalization.
Edit:
I have updated my answer, as you have updated your question... I agree with my initial answer even more now since...
a large portion of these cells are
likely to remain empty
If for example, a user didn't have any interests, if you normalize then you simple wont have a row in the interest table for that user. If you have everything in one massive table, then you will have columns (and apparently a lot of them) that contain just NULL's.
I have worked for a telephony company where there has been tons of tables, getting data could require many joins. When the performance of reading from these tables was critical then procedures where created that could generate a flat table (i.e. a denormalized table) that would require no joins, calculations etc that reports could point to. These where then used in conjunction with a SQL server agent to run the job at certain intervals (i.e. a weekly view of some stats would run once a week and so on).
Why not use the same approach Wordpress does by having a users table with basic user information that everyone has and then adding a "user_meta" table that can basically be any key, value pair associated with the user id. So if you need to find all the meta information for the user you could just add that to your query. You would also not always have to add the extra query if not needed for things like logging in. The benefit to this approach also leaves your table open to adding new features to your users such as storing their twitter handle or each individual interest. You also won't have to deal with a maze of associated ID's because you have one table that rules all metadata and you will limit it to only one association instead of 50.
Wordpress specifically does this to allow for features to be added via plugins, therefore allowing for your project to be more scalable and will not require a complete database overhaul if you need to add a new feature.
I think this is one of those "it depends" situation. Having multiple tables is cleaner and probably theoretically better. But when you have to join 6-7 tables to get information about a single user, you might start to rethink that approach.
I would say it depends on what the other tables really mean.
Does a user_details contain more then 1 more / users and so on.
What level on normalization is best suited for your needs depends on your demands.
If you have one table with good index that would probably be faster. But on the other hand probably more difficult to maintain.
To me it look like you could skip User_Details as it probably is 1 to 1 relation with Users.
But the rest are probably alot of rows per user?
Performance considerations on big tables
"Likes" and "views" (etc) are one of the very few valid cases for 1:1 relationship _for performance. This keeps the very frequent UPDATE ... +1 from interfering with other activity and vice versa.
Bottom line: separate frequent counters in very big and busy tables.
Another possible case is where you have a group of columns that are rarely present. Rather than having a bunch of nulls, have a separate table that is related 1:1, or more aptly phrased "1:rarely". Then use LEFT JOIN only when you need those columns. And use COALESCE() when you need to turn NULL into 0.
Bottom Line: It depends.
Limit search conditions to one table. An INDEX cannot reference columns in different tables, so a WHERE clause that filters on multiple columns might use an index on one table, but then have to work harder to continue the filtering columns in other tables. This issue is especially bad if "ranges" are involved.
Bottom line: Don't move such columns into a separate table.
TEXT and BLOB columns can be bulky, and this can cause performance issues, especially if you unnecessarily say SELECT *. Such columns are stored "off-record" (in InnoDB). This means that the extra cost of fetching them may involve an extra disk hit(s).
Bottom line: InnoDB is already taking care of this performance 'problem'.