Database Design For Tournament Management Software - mysql

I'm currently designing a web application using php, javascript, and MySQL. I'm considering two options for the databases.
Having a master table for all the tournaments, with basic information stored there along with a tournament id. Then I would create divisions, brackets, matches, etc. tables with the tournament id appended to each table name. Then when accessing that tournament, I would simply do something like "SELECT * FROM BRACKETS_[insert tournamentID here]".
My other option is to just have generic brackets, divisions, matches, etc. tables with each record being linked to the appropriate tournament, (or matches to brackets, brackets to divisions etc.) by a foreign key in the appropriate column.
My concern with the first approach is that it's a bit too on the fly for me, and seems like the database could get messy very quickly. My concern with the second approach is performance. This program will hopefully have a national if not international reach, and I'm concerned with so many records in a single table, and with so many people possibly hitting it at the same time, it could cause problems.
I'm not a complete newb when it comes to database management; however, this is the first one I've done completely solo, so any and all help is appreciated. Thanks!

Do not create tables for each tournament. A table is a type of an entity, not an instance of an entity. Maintainability and scalability would be horrible if you mix up those concepts. You even say so yourself:
This program will hopefully have a national if not international reach, and I'm concerned with so many records in a single table, and with so many people possibly hitting it at the same time, it could cause problems.
How on Earth would you scale to that level if you need to create a whole table for each record?
Regarding the performance of your second approach, why are you concerned? Do you have specific metrics to back up those concerns? Relational databases tend to be very good at querying relational data. So keep your data relational. Don't try to be creative and undermine the design of the database technology you're using.
You've named a few types of entities:
Tournament
Division
Bracket
Match
Competitor
etc.
These sound like tables to me. Manage your indexes based on how you query the data (that is, don't over-index or you'll pay for it with inserts/updates/deletes). Normalize the data appropriately, de-normalize where audits and reporting are more prevalent, etc. If you're worried about performance then keep an eye on the query execution paths for the ways in which you access the data. Slight tweaks can make a big difference.
Don't pre-maturely optimize. It adds complexity without any actual reason.

First, find the entities that you will need to store; things like tournament, event, team, competitor, prize etc. Each of these entities will probably be tables.
It is standard practice to have a primary key for each of them. Sometimes there are columns (or group of columns) that uniquely identify a row, so you can use that as primary key. However, usually it's best just to have a column named ID or something similar of numeric type. It will be faster and easier for the RDBMS to create and use indexes for such columns.
Store the data where it belongs: I expect to see the date and time of an event in the events table, not in the prizes table.
Another crucial point is conforming to the First normal form, since that assures data atomicity. This is important because it will save you a lot of headache later on. By doing this correctly, you will also have the correct number of tables.
Last but not least: add relevant indexes to the columns that appear most often in queries. This will help a lot with performance. Don't worry about tables having too many rows, RDBMS-es these days handle table with hundreds of millions of rows, they're designed to be able to do that efficiently.

Beside compromising the quality and maintainability of your code (as others have pointed out), it's questionable whether you'd actually gain any performance either.
When you execute...
SELECT * FROM BRACKETS_XXX
...the DBMS needs to find the table whose name matches "BRACKETS_XXX" and that search is done in the DBMS'es data dictionary which itself is a bunch of tables. So, you are replacing a search within your tables with a search within data dictionary tables. You pay the price of the search either way.
(The dictionary tables may or may not be "real" tables, and may or may not have similar performance characteristics as real tables, but I bet these performance characteristics are unlikely to be better than "normal" tables for large numbers of rows. Also, performance of data dictionary is unlikely to be documented and you really shouldn't rely on undocumented features.)
Also, the DBMS would suddenly need to prepare many more SQL statements (since they are now different statements, referring to separate tables), which would present the additional pressure on performance.

The idea of creating new tables whenever a new instance of an item appears is really bad, sorry.
A (surely incomplete) list of why this is a bad idea:
Your code will need to automatically add tables whenever a new Division or whatever is created. This is definitely a bad practice and should be limited to extremely niche cases - which yours definitely isn't.
In case you decide to add or revise a table structure later (e.g. adding a new field) you will have to add it to hundreds of tables which will be cumbersome, error prone and a big maintenance headache
A RDBMS is built to scale in terms of rows, not tables and associated (indexes, triggers, constraints) elements - so you are working against your tool and not with it.
THIS ONE SHOULD BE THE REAL CLINCHER - how do you plan to handle requests like "list all matches which were played on a Sunday" or "find the most recent three brackets where Frank Perry was active"?
You say:
I'm not a complete newb when it comes to database management; however, this is the first one I've done completely solo...
Can you remember another project where tables were cloned whenever a new set was required? If yes, didn't you notice some problems with that approach? If not, have you considered that this is precisely what a DBA would never ever do for any reason whatsoever?

Related

Having data stored across tables representing individual data types - Why is it wrong?

Say I have lots of time to waste and decide to make a database where information is not stored as entities but in separate inter-related tables representing INT,VARCHAR,DATE,TEXT, etc types.
It would be such a revolution to never have to design a database structure ever again except that the fact no-one else has done it probably indicates it's not a good idea :p
So why is this a bad design ? What principles is this going against ? What issues could it cause from a practical point of view with a relational database ?
P.S: This is for the learning exercise.
Why shouldn't you separate out the fields from your tables based on their data types? Well, there are two reasons, one philosophical, and one practical.
Philosophically, you're breaking normalization
A properly normalized database will have different tables for different THINGS, with each table having all fields necessary and unique for that specific "thing." If the only way to find the make, model, color, mileage, manufacture date, and purchase date of a given car in my CarCollectionDatabase is to join meaningless keys on three tables demarked by data-type, then my database has almost zero discoverablity and no real cohesion.
If you designed a database like that, you'd find writing queries and debugging statements would be obnoxiously tiresome. Which is kind of the reason you'd use a relational database in the first place.
(And, really, that will make writing queries WAY harder.)
Practically, databases don't work that way.
Every database engine or data-storage mechanism i've ever seen is simply not meant to be used with that level of abstraction. Whatever engine you had, I don't know how you'd get around essentially doubling your data design with fields. And with a five-fold increase in row count, you'd have a massive increase in index size, to the point that once you get a few million rows your indexes wouldn't actually help.
If you tried to design a database like that, you'd find that even if you didn't mind the headache, you'd wind up with slower performance. Instead of 1,000,000 rows with 20 fields, you'd have that one table with just as many fields, and some 5-6 extra tables with 1,000,000+ entries each. And even if you optimized that away, your indexes would be larger, and larger indexes run slower.
Of course, those two ONLY apply if you're actually talking about databases. There's no reason, for example, that an application can't serialize to a text file of some sort (JSON, XML, etc.) and never write to a database.
And just because your application needs to store SQL data doesn't mean that you need to store everything, or can't use homogenous and generic tables. An Access-like application that lets user define their own "tables" might very well keep each field on a distinct row... although in that case your database's THINGS would be those tables and their fields. (And it wouldn't run as fast as a natively written database.)

mysql table with 40+ columns

I have 40+ columns in my table and i have to add few more fields like, current city, hometown, school, work, uni, collage..
These user data wil be pulled for many matching users who are mutual friends (joining friend table with other user friend to see mutual friends) and who are not blocked and also who is not already friend with the user.
The above request is little complex, so i thought it would be good idea to put extra data in same user table to fast access, rather then adding more joins to the table, it will slow the query more down. but i wanted to get your suggestion on this
my friend told me to add the extra fields, which wont be searched on one field as serialized data.
ERD Diagram:
My current table: http://i.stack.imgur.com/KMwxb.png
If i join into more tables: http://i.stack.imgur.com/xhAxE.png
Some Suggestions
nothing wrong with this table and columns
follow this approach MySQL: Optimize table with lots of columns - which serialize extra fields into one field, which are not searchable's
create another table and put most of the data there. (this gets harder on joins, if i already have 3 or more tables to join to pull the records for users (ex. friends, user, check mutual friends)
As usual - it depends.
Firstly, there is a maximum number of columns MySQL can support, and you don't really want to get there.
Secondly, there is a performance impact when inserting or updating if you have lots of columns with an index (though I'm not sure if this matters on modern hardware).
Thirdly, large tables are often a dumping ground for all data that seems related to the core entity; this rapidly makes the design unclear. For instance, the design you present shows 3 different "status" type fields (status, is_admin, and fb_account_verified) - I suspect there's some business logic that should link those together (an admin must be a verified user, for instance), but your design doesn't support that.
This may or may not be a problem - it's more a conceptual, architecture/design question than a performance/will it work thing. However, in such cases, you may consider creating tables to reflect the related information about the account, even if it doesn't have a x-to-many relationship. So, you might create "user_profile", "user_credentials", "user_fb", "user_activity", all linked by user_id.
This makes it neater, and if you have to add more facebook-related fields, they won't dangle at the end of the table. It won't make your database faster or more scalable, though. The cost of the joins is likely to be negligible.
Whatever you do, option 2 - serializing "rarely used fields" into a single text field - is a terrible idea. You can't validate the data (so dates could be invalid, numbers might be text, not-nulls might be missing), and any use in a "where" clause becomes very slow.
A popular alternative is "Entity/Attribute/Value" or "Key/Value" stores. This solution has some benefits - you can store your data in a relational database even if your schema changes or is unknown at design time. However, they also have drawbacks: it's hard to validate the data at the database level (data type and nullability), it's hard to make meaningful links to other tables using foreign key relationships, and querying the data can become very complicated - imagine finding all records where the status is 1 and the facebook_id is null and the registration date is greater than yesterday.
Given that you appear to know the schema of your data, I'd say "key/value" is not a good choice.
I would advice to run some tests. Try it both ways and benchmark it. Nobody will be able to give you a definitive answer because you have not shared your hardware configuration, sample data, sample queries, how you plan on using the data etc. Here is some information that you may want to consider.
Use The Database as it was intended
A relational database is designed specifically to handle data. Use it as such. When written correctly, joining data in a well written schema will perform well. You can use EXPLAIN to optimize queries. You can log SLOW queries and improve their performance. Databases have been around for years, if putting everything into a single table improved performance, don't you think that would be all the buzz on the internet and everyone would be doing it?
Engine Types
How will inserts be affected as the row count grows? Are you using MyISAM or InnoDB? You will most likely want to use InnoDB so you get row level locking and not table. Make sure you are using the correct Engine type for your tables. Get the information you need to understand the pros and cons of both. The wrong engine type can kill performance.
Enhancing Performance using Partitions
Find ways to enhance performance. For example, as your datasets grow you could partition the data. Data partitioning will improve the performance of a large dataset by keeping slices of the data in separate partions allowing you to run queries on parts of large datasets instead of all of the information.
Use correct column types
Consider using UUID Primary Keys for portability and future growth. If you use proper column types, it will improve performance of your data.
Do not serialize data
Using serialized data is the worse way to go. When you use serialized fields, you are basically using the database as a file management system. It will save and retrieve the "file", but then your code will be responsible for unserializing, searching, sorting, etc. I just spent a year trying to unravel a mess like that. It's not what a database was intended to be used for. Anyone advising you to do that is not only giving you bad advice, they do not know what they are doing. There are very few circumstances where you would use serialized data in a database.
Conclusion
In the end, you have to make the final decision. Just make sure you are well informed and educated on the pros and cons of how you store data. The last piece of advice I would give is to find out what heavy users of mysql are doing. Do you think they store data in a single table? Or do they build a relational model and use it the way it was designed to be used?
When you say "I am going to put everything into a single table", you are saying that you know more about performance and can make better choices for optimization in your code than the team of developers that constantly work on MySQL to make it what it is today. Consider weighing your knowledge against the cumulative knowledge of the MySQL team and the DBAs, companies, and members of the database community who use it every day.
At a certain point you should look at the "short row model", also know as entity-key-value stores,as well as the traditional "long row model".
If you look at the schema used by WordPress you will see that there is a table wp_posts with 23 columns and a related table wp_post_meta with 4 columns (meta_id, post_id, meta_key, meta_value). The meta table is a "short row model" table that allows WordPress to have an infinite collection of attributes for a post.
Neither the "long row model" or the "short row model" is the best model, often the best choice is a combination of the two. As #nevillek pointed out searching and validating "short row" is not easy, fetching data can involve pivoting which is annoyingly difficult in MySql and Oracle.
The "long row model" is easier to validate, relate and fetch, but it can be very inflexible and inefficient when the data is sparse. Some rows may have only a few of the values non-null. Also you can't add new columns without modifying the schema, which could force a system outage, depending on your architecture.
I recently worked on a financial services system that had over 700 possible facts for each instrument, most had less than 20 facts. This could have been built by setting up dozens of tables, each for a particular asset class, or as a table with 700 columns, but we chose to use a combination of a table with about 20 columns containing the most popular facts and a 4 column table which contained the other facts. This design was efficient but was difficult ot access, so we built a few table functions in PL/SQL to assist with this.
I have a general comment for you,
Think about it: If you put anything more than 10-12 columns in a table even if it makes sense to put them in a table, I guess you are going to pay the price in the short term, long term and medium term.
Your 3 tables approach seems to be better than the 1 table approach, but consider making those into 5-6 tables rather than 3 tables because you still can.
Move currently, currently_position, currently_link from user-table and work from user-profile into a new table with your primary key called USERWORKPROFILE.
Move locale Information from user-profile to a newer USERPROFILELOCALE information because it is generic in nature.
And yes, all your generic attributes in all the tables should be int and not varchar.
For instance, City needs to move out to a new table called LIST_OF_CITIES with cityid.
And your attribute city should change from varchar to int and point to cityid in LIST_OF_CITIES.
Do not worry about performance issues; the more tables you have, better the performance, because you are actually handing out the performance to the database provider instead of taking it all in your own hands.

MySQL design regarding a web

I am tackling a problem in class to design a mySQL representation of a web that stores a list of events associated with a person. So, for this table/tables, it would have 2 columns, one of which is the person's name and the other is the event. However, a person will generally have anywhere from 30-1000 events, so this table, which we plan to have for our entire undergraduate class of 6000 students, will have millions of entries. Is there a better way to store this in mySQL that will take less space, but will still be able to retrieve individual events and the list of people that attended it just as easily as if it was a table of two columns?
Yes, there is a technique called many-to-many, and essentially breaks your one table into three, which is critical when you consider that there are indeed exactly three entities being modeled (as a good sanity check)
Person
Event
A Person's association with an Event
You model this as three tables, with the first two having essentially two columns each: one with a unique index (called "primary key"), and the second being a semantic name (person name, event name). Note that you can also add any number of columns to these with only one factor of increased storage (most likely your first move will be to add a date column to the event table).
The third table is the interesting one, it contains only 2 columns, each numeric, both of which are references to the other tables (each row is simply: (person_id, event_id)). We term these "foreign keys".
This structure means a few things:
No matter how many events someone goest to, that someone is only represented once.
same with events, not matter how many attendees
The attendance is a "first-class" entity, and can grow to include it's own attributes (i.e. "role")
This structure is called many-to-many because each person may attend many events, and each event may have many attendees.
The quintessential feature of the design is that no single piece of domain knowledge is repeated, only "keys" are repeated as necessary to model the real-world domain. (i.e. in your first example, accounting for a name change would require an unknown quantity of updates, and might lead to data anomalies, avoidance of which is a primary concern of database normalization.
Don't worry about "space". This isn't the 1970s and we're not going to run out of columns on punch cards to store data. You should be concerned with expressing your requirements in the proper, most normalized data structure. With proper indexing there shouldn't be a problem, not with this volume of data.
Remember indexes need to be defined on anything you will include as part of a WHERE clause, and sometimes you may need to add additional indexes for large lists fetched with ORDER BY and LIMIT.
Whenever possible or practical use an integer identifier instead of a string. These are stored as a small number of bytes, typically 4, compared with a variable length string which is typically at least the length of the string in bytes plus 1.
A properly normalized database will use numerical identifiers for things anyway, so this kind if thing isn't a huge concern. The only time you go against this, or deliberately de-normalize your data, is when you have a legitimate performance problem that cannot be easily solved using some other method.
As always, test your schema by generating large amounts of dummy data and see how it performs. Since you have a good idea of the requirements in advance, do some testing at those levels, and then, to be on the safe side, try 2x, 5x and 10x the data to see how much flexibility your design has. It's okay to have performance limitations so long as you know at what kind of scale you'll experience them.
mySQL relational databases were designed specifically to handle this sort of problem. Handling millions of entries is not a problem. Complex queries may take a couple seconds but will perform remarkably well.
It is best design to store 1 event per row. The way you are going about it sounds like the best way. Good Luck.

is better to create tables based on content or views?

i'm learning mysql and was working on a database for work. Everything's fine so far but I had a question. I am organizing financial statements for firms(balance sheet table, income statement table, cashflow table,etc.) and most companies have quarterly statements(they are unaudited) and annual statements(which are audited). Right now for each statement I have a column that flags it for annual or quarterly.
Its not likely that someone will be running a report on an audited and unaudited statement at the same time, so I was thinking if it was worth it to create a table for audited and one for unaudited. The reason I was thinking this was eventually the data will get fairly large and I thought the smaller the tables the faster performance.
So when I design a database should I be designing based on the content(i.e. group everything thats the same regardless) or should I be grouping based on how people will access it?
Another question this raises is should I be grouping financial statements by countries..since all analysis down at our firm in 90% within the same country
This is impossible to answer definitively without knowing the whole problem.
However, usually you want a single table to represent each logical entity in your system. From the sound of it, quarterly and annual statements represent the same logical entity, but differ by a single category column/field. The same holds true for the country question--if the only difference is the country (a categorization), then they likely should all be stored in the same table.
If you were to split your data into separate tables by category, your data would be scattered across multiple tables, and would be very hard to query. For example, if you wanted a count of all statements in the system, you would have to query ALL country tables and add the results together.
Edit: Joe Celko calls this anti-pattern "Attribute Splitting".
First of all I have to point out, I'm not a professional DB designer.
But if I ware you, in this case I would create one table as the entities are the same basically.
If you fear of mysql's performace on lager datasets, maybe it would be better to start building your app on Postgres. You can boost mysql's performace with stored functions/procedures or maybe views if you have to run complicated queries and of course you can use memcache or any nosql stuff to let the SQL rest a bit.
If you are sure in that users will search mainly only for this or that type of records, you can build three tables. One for all of the records, one-one for the audited and unaudited ones. You can keep them syncronized with the InnoDB's triggers (ON UPDATE/DELETE/INSERT). They could work like views, but I think (not tested) they would be faster then views. In this case you have to manage only the first "large" table. If you insert an audited record, the trigger fires and puts a record in to the audited table an so on...
Best wishes!
I agree with Phil and Damien - one table is better. What you want is one table per type of real business thing. If you design your tables to resemble real things, even abstract or conceptual things, then your data design is more likely to stand the test of time. Once you've sketched out a schema based on the real things you have data about, then you can go back and apply the rules of normalization to formalize your design.
As a rule, it is a bad idea to design for a performance problem you are worried about, but haven't actually seen. Your intuition about big tables being slower might actually be wrong. Most DBMS systems like bigger tables, at least to a point. When tables are big the query optimizers choose to use indexes. When tables are small they often end up getting full table scans, which can really slow down concurrent access. If your tables get so big that they are beyond the capabilities of your DBMS then it is time to consider either archiving out old data that you aren't using anymore or buying a more scalable DBMS.

Which is more efficient: Multiple MySQL tables or one large table?

I store various user details in my MySQL database. Originally it was set up in various tables meaning data is linked with UserIds and outputting via sometimes complicated calls to display and manipulate the data as required. Setting up a new system, it almost makes sense to combine all of these tables into one big table of related content.
Is this going to be a help or hindrance?
Speed considerations in calling, updating or searching/manipulating?
Here's an example of some of my table structure(s):
users - UserId, username, email, encrypted password, registration date, ip
user_details - cookie data, name, address, contact details, affiliation, demographic data
user_activity - contributions, last online, last viewing
user_settings - profile display settings
user_interests - advertising targetable variables
user_levels - access rights
user_stats - hits, tallies
Edit: I've upvoted all answers so far, they all have elements that essentially answer my question.
Most of the tables have a 1:1 relationship which was the main reason for denormalising them.
Are there going to be issues if the table spans across 100+ columns when a large portion of these cells are likely to remain empty?
Multiple tables help in the following ways / cases:
(a) if different people are going to be developing applications involving different tables, it makes sense to split them.
(b) If you want to give different kind of authorities to different people for different part of the data collection, it may be more convenient to split them. (Of course, you can look at defining views and giving authorization on them appropriately).
(c) For moving data to different places, especially during development, it may make sense to use tables resulting in smaller file sizes.
(d) Smaller foot print may give comfort while you develop applications on specific data collection of a single entity.
(e) It is a possibility: what you thought as a single value data may turn out to be really multiple values in future. e.g. credit limit is a single value field as of now. But tomorrow, you may decide to change the values as (date from, date to, credit value). Split tables might come handy now.
My vote would be for multiple tables - with data appropriately split.
Good luck.
Combining the tables is called denormalizing.
It may (or may not) help to make some queries (which make lots of JOINs) to run faster at the expense of creating a maintenance hell.
MySQL is capable of using only JOIN method, namely NESTED LOOPS.
This means that for each record in the driving table, MySQL locates a matching record in the driven table in a loop.
Locating a record is quite a costly operation which may take dozens times as long as the pure record scanning.
Moving all your records into one table will help you to get rid of this operation, but the table itself grows larger, and the table scan takes longer.
If you have lots of records in other tables, then increase in the table scan can overweight benefits of the records being scanned sequentially.
Maintenance hell, on the other hand, is guaranteed.
Are all of them 1:1 relationships? I mean, if a user could belong to, say, different user levels, or if the users interests are represented as several records in the user interests table, then merging those tables would be out of the question immediately.
Regarding previous answers about normalization, it must be said that the database normalization rules have completely disregarded performance, and is only looking at what is a neat database design. That is often what you want to achieve, but there are times when it makes sense to actively denormalize in pursuit of performance.
All in all, I'd say the question comes down to how many fields there are in the tables, and how often they are accessed. If user activity is often not very interesting, then it might just be a nuisance to always have it on the same record, for performance and maintenance reasons. If some data, like settings, say, are accessed very often, but simply contains too many fields, it might also not be convenient to merge the tables. If you're only interested in the performance gain, you might consider other approaches, such as keeping the settings separate, but saving them in a session variable of their own so that you don't have to query the database for them very often.
Do all of those tables have a 1-to-1 relationship? For example, will each user row only have one corresponding row in user_stats or user_levels? If so, it might make sense to combine them into one table. If the relationship is not 1 to 1 though, it probably wouldn't make sense to combine (denormalize) them.
Having them in separate tables vs. one table is probably going to have little effect on performance though unless you have hundreds of thousands or millions of user records. The only real gain you'll get is from simplifying your queries by combining them.
ETA:
If your concern is about having too many columns, then think about what stuff you typically use together and combine those, leaving the rest in a separate table (or several separate tables if needed).
If you look at the way you use the data, my guess is that you'll find that something like 80% of your queries use 20% of that data with the remaining 80% of the data being used only occasionally. Combine that frequently used 20% into one table, and leave the 80% that you don't often use in separate tables and you'll probably have a good compromise.
Creating one massive table goes against relational database principals. I wouldn't combine all them into one table. Your going to get multiple instances of repeated data. If your user has three interests for example, you will have 3 rows, with the same user data in just to store the three different interests. Definatly go for the multiple 'normalized' table approach. See this Wiki page for database normalization.
Edit:
I have updated my answer, as you have updated your question... I agree with my initial answer even more now since...
a large portion of these cells are
likely to remain empty
If for example, a user didn't have any interests, if you normalize then you simple wont have a row in the interest table for that user. If you have everything in one massive table, then you will have columns (and apparently a lot of them) that contain just NULL's.
I have worked for a telephony company where there has been tons of tables, getting data could require many joins. When the performance of reading from these tables was critical then procedures where created that could generate a flat table (i.e. a denormalized table) that would require no joins, calculations etc that reports could point to. These where then used in conjunction with a SQL server agent to run the job at certain intervals (i.e. a weekly view of some stats would run once a week and so on).
Why not use the same approach Wordpress does by having a users table with basic user information that everyone has and then adding a "user_meta" table that can basically be any key, value pair associated with the user id. So if you need to find all the meta information for the user you could just add that to your query. You would also not always have to add the extra query if not needed for things like logging in. The benefit to this approach also leaves your table open to adding new features to your users such as storing their twitter handle or each individual interest. You also won't have to deal with a maze of associated ID's because you have one table that rules all metadata and you will limit it to only one association instead of 50.
Wordpress specifically does this to allow for features to be added via plugins, therefore allowing for your project to be more scalable and will not require a complete database overhaul if you need to add a new feature.
I think this is one of those "it depends" situation. Having multiple tables is cleaner and probably theoretically better. But when you have to join 6-7 tables to get information about a single user, you might start to rethink that approach.
I would say it depends on what the other tables really mean.
Does a user_details contain more then 1 more / users and so on.
What level on normalization is best suited for your needs depends on your demands.
If you have one table with good index that would probably be faster. But on the other hand probably more difficult to maintain.
To me it look like you could skip User_Details as it probably is 1 to 1 relation with Users.
But the rest are probably alot of rows per user?
Performance considerations on big tables
"Likes" and "views" (etc) are one of the very few valid cases for 1:1 relationship _for performance. This keeps the very frequent UPDATE ... +1 from interfering with other activity and vice versa.
Bottom line: separate frequent counters in very big and busy tables.
Another possible case is where you have a group of columns that are rarely present. Rather than having a bunch of nulls, have a separate table that is related 1:1, or more aptly phrased "1:rarely". Then use LEFT JOIN only when you need those columns. And use COALESCE() when you need to turn NULL into 0.
Bottom Line: It depends.
Limit search conditions to one table. An INDEX cannot reference columns in different tables, so a WHERE clause that filters on multiple columns might use an index on one table, but then have to work harder to continue the filtering columns in other tables. This issue is especially bad if "ranges" are involved.
Bottom line: Don't move such columns into a separate table.
TEXT and BLOB columns can be bulky, and this can cause performance issues, especially if you unnecessarily say SELECT *. Such columns are stored "off-record" (in InnoDB). This means that the extra cost of fetching them may involve an extra disk hit(s).
Bottom line: InnoDB is already taking care of this performance 'problem'.