Kernel time increases for same number of particles - cuda

I am trying to run my code on NVIDIA's K10 GPU. I am using 5.0 CUDA Driver and 4.2 CUDA runtime. The problem is that the time taken by the kernel increases with iterations, where each iteration uses the same number of sources and targets (or particles). Because of this, the kernel eventually takes very large times, and the code crashes with runtime error, which says something like "GPU fallen off the bus".
The plot showing the behavior of increasing kernel run time with number of iterations can be seen here:
https://docs.google.com/open?id=0B5QLL4ig3LVqODdmVjNBTlp5UFU
I tried to run the NVIDIA "nbody" example to understand if the same thing happens here too, and yes it does. For the number of particles/bodies (Np) = 1e5 and 10 iterations, code runs fine. For Np=1e5 and iterations= 100, OR Np=1e6 and iterations = 10, code goes into a mode where it hangs the entire system.
When I run my own kernel as well as NVIDIA's nbody example on a different machine with Tesla C2050 NVIDIA card (CUDA Driver version: 3.2, and runtime version: 3.2), there is no problem, and kernel takes the same amount of time for every iteration.
I am trying to understand whats going on in the machine with the K10 GPU. I have tried different combinations of CUDA driver and runtime versions on this machine, and here is what I get:
For 5.0 CUDA Driver, 4.2 Runtime, it just hangs and sometimes says "GPU fallen off the bus".
For 4.2 CUDA Driver, 4.2 Runtime, the codes (nbody as well as my code) crash with error: "CUDA Runtime API error 39: uncorrectable ECC error encountered."
For 5.0 CUDA Driver, 5.0 Runtime, it just hangs and sometimes says "GPU fallen off the bus".
This is a 64-bit linux machine, which we have recently assembled with NVIDIA K10 GPU card. I am using gfortran44 and gcc44.
Please let me know if any other info. is required to track the problem.
Thanks in advance for the help!
M

I'm mostly just creating an answer so we can call this question closed, but I'll try to add a few details.
Tesla GPUs come in 2 distinct categories: those with a fan, and those without. Those with a fan carry (at this time) the "C" designation, although the K20 product family naming will be slightly different:
These are not exhaustive lists:
Tesla GPUs with a Fan: C870, C1060, C2050, C2070, C2075, K20c ("C Class")
Tesla GPUs without a Fan: M1060, M2050, M2070, M2075, M2090, K10, K20, K20X ("M class")
(note that there is currently no K10 type product with a fan or "C" designation)
Tesla GPUs with a fan are designed to be plugged into a wide variety of PC boxes and chassis, including various workstation and server variants. Since they have their own fan, they require a supply of inlet air that is below a certain temperature level, but given that, they will keep themselves cool. As the workload increases, and the generated heat increases, they will spin up their own fan to keep themselves cool. The main ways you can screw up this process are by either restricting the inlet air flow or by putting it in an ambient air environment that is hotter than its max inlet spec.
Tesla GPUs without a fan have something called a passive heatsink and they cannot keep themselves cool independently and take a passive role in the cooling process. They still have a temperature sensor, but it becomes the responsibility of the server BMC (baseboard management controller) to monitor this temperature sensor (this is done directly at the hardware/firmware level, independent of any OS or any activity being directed at the GPU), and to direct a level of airflow over the card that is sufficient to keep the card cool based on it's indicated temperature. The BMC does this by ramping up whatever fans are designed into the server chassis that control airflow over the GPU. Normally there will be shrouding/ducting within the chassis to aid in this process. Server manufacturers integrating these cards have a variety of responsibilities and must follow various technical specifications from NVIDIA in order to make this work.
If you happen to get your hands on a Tesla GPU without a fan and just slap it in some random chassis, you're pretty much guaranteed to have the behavior as described in this question. For this reason, Tesla "M" series and "K" series GPUs are normally only sold to OEMs who have undergone the qualification process.
Since the average sysadmin/system assembler is not likely to devise a suitable closed loop fan control system and normally does not have easy access to the necessary specifications defining the temperature sensor and access method, the only klugey workaround if you have one of these that you simply must play with, is to direct a high level of continuous airflow over the card, in whatever setting you put it. Be advised, that this will most likely be noisy. If you don't have a noisy level of airflow, you probably do not have enough airflow to keep a card cool that is in a high workload situation. In addition, you should probably keep an eye on GPU temps. Note that the nvidia-smi method for monitoring GPU temps does not work for all M class GPUs (i.e. GPUs without a fan). Unfortunately, the method of temperature sensor access in Fermi and prior for the M class GPUs (different than the C class GPUs) was such that it could not be readily monitored in-system via the nvidia-smi command, so in these cases you will get no temperature reading from nvidia-smi, making this approach even harder to manage. Things changed with the Kepler generation, so now the temperature can be monitored both by the nvidia-smi method and by the server BMC at the hardware/firmware level.
C class products with a fan have a temperature that can be monitored with nvidia-smi, regardless of generation. But this is normally not necessary since the card has it's own control system to keep itself cool.
As mentioned in the comments, all GPUs also have a variety of protection mechanisms, none of which are guaranteed to prevent damage. (If you throw the card in a fire, there's nothing to be done about that.) But the first typical mechanism is thermal throttling. At some predefined high temperature near the maximum safe operating range of the GPU, the GPU firmware will independently reduce its clocks to attempt to prevent further temperature rise. (If the card is clocked slower, then generally it's ability to generate heat is also somewhat reduced.) This is a crude mechanism, and when this thermal throttling occurs, something in the cooling arena is already wrong. The card is designed to not enter thermal throttling ever, under normal operating conditions. If temperatures continue to rise (and there is not much headroom at this point), the card will enter it's final protection mode which is to halt itself. At this point the GPU has become unresponsive to the system, and at the OS level, messages like "gpu has fallen of the bus" are typical. This means cooling has failed and protection mechanisms have failed.

Related

Can I fix my GPU clock rate to ensure consistent profiling results?

I want to do some comparative profiling of a couple of CUDA kernels. However, one of them runs within a program which loads the GPU with more work, while the other is only running in a test harness.
For some GPUs, these circumstances mean the clock rates change (perhaps more than one kind of clock rate, because there are several). This effect is particularly severe in devices like Tesla T4's (which aren't actively cooled).
Is it possible to prevent clock rates from changing due to load (or thermal conditions)?
I've looked into doing this the nvidia-smi utility, which has a sub-command named clocks - but all that does is the following:
clocks -- Control and query clock information.
Usage: nvidia-smi clocks [options]
options include:
[-i | --id]: Enumeration index, PCI bus ID or UUID. Provide comma
separated values for more than one device
[ | --sync-boost-list]: List all synchronous boost groups
[ | --sync-boost-add]: Add a synchronous boost group
[ | --sync-boost-remove]: Remove a synchronous boost group. Provide the group id
returned from --sync-boost-list
... and it doesn't look like that's what I need. Of course, non-nvidia-smi-based solutions are welcome.
Notes:
I'm particularly interested in fixing clock rates for Quadro and Tesla cards, in case that matters.
I can be root if necessary.
Using CUDA 10.2 with its bundled driver. If absolutely necessary, I might be able to switch to a new version.
TL;DR
first, set persistence mode e.g. nvidia-smi -i 0 -pm 1 (sets persistence mode for the GPU index 0)
use a nvidia-smi command like -ac or -lgc (application clocks, lock gpu clock)
there is nvidia-smi command line help for all of this nvidia-smi --help
this functionality may not work on your GPU. Install the latest driver, and also some of this functionality is simply not available on certain products
these settings often require root privilege, or admin privilege on windows
any of this description is subject to change. With some care, the command-line help for the version you are using should be instructive
LONGER:
I'm using driver 455.23.05 for this description. Some features (e.g. -lgc) may not be available in older drivers. Setting persistence mode may be necessary for some of these features, and will also help to reduce variability on application start-up. This is not intended to be an exhaustive description of the nvidia-smi tool.
SETTING APPLICATION CLOCKS:
The application clocks feature should generally be useful for the testing described. It will not force the GPU clocks to remain at the specified setting when there is no application running (AFAIK), but the clocks should attain those values "as soon as" the application starts running. It allows you to specify both gpu clock (i.e. core clock) as well as memory clock. Let's start by excerpting the command line help text for some of the important switches:
-ac --applications-clocks= Specifies <memory,graphics> clocks as a
pair (e.g. 2000,800) that defines GPU's
speed in MHz while running applications on a GPU.
-rac --reset-applications-clocks
Resets the applications clocks to the default values.
-acp --applications-clocks-permission=
Toggles permission requirements for -ac and -rac commands:
0/UNRESTRICTED, 1/RESTRICTED
To get started setting application clocks, you may need to use sudo or similar on linux for some or all of these commands. Also note above the requirement for elevated privilege can be turned on/off. Also important is that you cannot pick any values you like for <memory,graphics> settings pair. You must specify a pair, and furthermore the pair can only come from a list of permissible options. Other choices will result in unspecified behavior. These choices can be determined from the --query-supported-clocks switch (use --help-query-supported-clocks to get command-line help on that switch) to nvidia-smi which itself requires some formatting. For example, the following command will give an exhaustive list of the valid pairs that can be passed to the -ac command:
nvidia-smi -i 0 --query-supported-clocks=mem,gr --format=csv
Once you have that list of valid pairs, you can specify one of those pairs to the application clocks command:
nvidia-smi -i 0 -ac 877,1215
(The above command, if run with root or enabled via -acp would set the memory clock to 877MHz and the core clock to 1215MHz on my Tesla V100, for example. Note the -i switch to select the GPU to target with this command. The 877,1215 pair may not be valid on your GPU. Also note that the -acp feature is removed from drivers 465.xx and newer.)
When you are done with whatever you are doing, you may wish to reset the application clock behavior to the default behavior (GPU selects clock freqs according to its own heuristics) using -rac.
Also, a number of the pairs offered may involve "boosting" behavior. The GPU is not guaranteed to maintain all clocks exactly as you specify, if a throttling event occurs. Typical throttling events are:
GPU is consuming too much electrical power
GPU temperature is too high
The existence of an actual throttling event can be discovered using the "full" output from nvidia-smi (nvidia-smi -a), look for "clocks throttle reasons". Other useful information is available in this output such as the default application clocks. When N/A appears in your output, it means that your GPU does not support this feature. There is a great variety of supported features across various GPU families, I won't be able to respond to questions about this.
In the absence of a throttling event, and assuming your GPU supports the feature, I would expect application clocks to remain in effect throughout your application runtime. Note that if this command is specified while an application is currently running, the change in clocks may not take effect until the GPU becomes idle. You may wish to monitor GPU clocks in this case (again, using nvidia-smi). Therefore I would generally recommend using these commands when the GPU is idle. Then begin your work on the GPU after that.
LOCK GPU (CORE) CLOCK:
In many cases, the gpu core clock (core, gpu, graphics are all synonyms in this context) exhibits the most variability (for example the application clocks offered on my Tesla V100 only include a value of 877MHz for memory clock; no other choices are possible). There is a separate switch that can be used to "lock" the GPU core clock to a range of values.
-lgc --lock-gpu-clocks= Specifies <minGpuClock,maxGpuClock> clocks as a
pair (e.g. 1500,1500) that defines the range
of desired locked GPU clock speed in MHz.
Setting this will supercede application clocks
and take effect regardless if an app is running.
Input can also be a singular desired clock value
(e.g. <GpuClockValue>).
-rgc --reset-gpu-clocks
Resets the Gpu clocks to the default values.
This range is specified using a lower and upper endpoint for the range. If you wish to select a specific value only, you can specify the lower and upper endpoints both to be that value. As far as I know the range endpoints are inclusive.
For example, the following command:
nvidia-smi -i 0 -lgc 1215,1215
will "lock" the GPU core clock to 1215 MHz on my Tesla V100 GPU. As far as I know, this effect takes place immediately, even if an application is running. Most other caveats I can think of should be similar for application clocks:
choose a valid GPU core clock, as output from the --query-supported-clocks command
GPU is not guaranteed to maintain the request in the event of throttling
elevated privilege is required
reset the behavior with -rgc
As indicated in the help, this switch "overrides" previous application clocks settings with respect to core clock. Also, note that many switches come in 2 flavors, a "long" form and a "short" form. Where additional switch parameters are required, the long form often requires an = separator, the short form often requires a space separator:
nvidia-smi -i 0 -lgc 1215,1215
or
nvidia-smi -i 0 -lock-gpu-clocks=1215,1215
you generally cannot intermix this formatting:
nvidia-smi -i 0 -lgc=1215,1215
will probably report an error.
A FINAL NOTE:
This effect is particularly severe in devices like Tesla T4's (which aren't actively cooled).
In my experience with T4, a possible observation is throttling. The T4 GPU is one of the lowest power datacenter-grade GPUs, and its certainly possible for the GPU compute demands to exceed what the power limits (70W) can support. In this case, the GPU clocks will throttle, and none of the above commands will allow you to override this behavior. By design, you cannot force the GPU to operate at elevated clocks when the GPU is trying to protect itself, or protect the system it is running in.
Also, the fact that a T4 is not actively cooled really should not matter. The only approved/supported usage setting for a T4 is in a server that is designed to handle the T4. (A similar statement is true for any NVIDIA Datacenter GPU). Such servers monitor the T4 GPU temperature and provide server-delivered forced flow-through cooling to the GPU. This is by design. The server is responsible for keeping the GPU in a proper temperature operating range. If the server is not doing that, you should address that with your server vendor. If you are operating the T4 GPU in a non-approved setting (such as a non-qualified server, or a desktop/workstation) then I would generally expect the experience with that device to be dismal.
MORE RECENTLY: NVIDIA has published this blog which covers many of the same topics. If there are discrepancies between what I have stated above, and the blog, the blog should be considered the best source.

Does nvidia gpu work less efficiently when it is the only gpu in PC?

I want to assemble a new computer mainly for CUDA applications. When it comes to CPU I have to choose between AMD and Intel.
Most of the AMD's processors don't have integrated gpu while Intel's processors do.
My question is:
If the nvidia gpu would be the only graphic processing unit in the whole PC (without integrated one),
would its efficiency for CUDA programs be worse as it has to produce some graphics on a desktop (while using for example Matlab)?
The anwer is yes, efficiency would be slightly lower due to the GPU doing display tasks, like moving the cursor around or scrolling a display in a .pdf browser.
however if you are aiming for a reasonably mid-to-high-end GPU, the loss of efficiency is marginal. If you have enough money, you will buy dedicated GPU, but if not, then just don't bother. It might be like 1% or less.
A bigger problem is that the display takes up RAM, that (a) becomes unavailable to CUDA applications and (b) the CUDA manual states that the display driver is allowed to dis-own the CUDA application from it's memory at any time without warning (!).
If you ask me if that does really happen (display driver taking over the CUDA app memory), then yes, I have experienced it, with the prime example being when you change the resolution of your display.
So definetely don't do any banking with GPUs or you might see your accounts being randomly infused with millions :-)
That's why 'proffesional' CUDA cards (the tesla variety) have no display outputs - just in case.

Multiple GPUs and Multiple Executables

Suppose I have 4 GPUs and would like to run 50 CUDA programs in parallel. My question is: is the NVIDIA driver smart enough to run the 50 CUDA programs on the different GPUs or do I have to set the CUDA device for each program?
thank you
The first point to make is that you cannot run 50 applications in parallel on 4 GPUs on just about any CUDA platform. If you have a Hyper-Q capable GPU, there is the possibility of up to 32 threads or MPI processes queuing work to the GPU. Otherwise there is a single command queue.
For anything other than the latest Kepler Tesla cards, CUDA driver only supports a single active context at a time. If you run more that one application on a GPU, the processes will both have contexts which just contend with one another in a "first come, first serve" basis. If one application blocks the other with a long running kernel or similar, there is no pre-emption or anything else which makes the process yield to another process. When the GPU is shared with a display manager, there is a watchdog timer that will impose an upper limit of a few seconds before the application will get its context killed. The result is that only one context ever runs on the hardware at a time. Context switching isn't free, and there is a performance penalty to having multiple processes contending for a single device.
Furthermore, every context present on a GPU requires device memory. On the platform you are asking about, linux, there is no memory paging, so every context's resources must coexist in GPU memory. I don't believe it would be possible to have 12 non-trivial contexts running on any current GPU simultaneously - you would run out of available memory well before that number. Trying to run more applications would result in an context establishment failure.
As for the behaviour of the driver distributing multiple applications on multiple GPUs, AFAIK the linux driver doesn't do any intelligent distribution of processes amongst GPUs, except when one or more of the GPUs are in a non-default compute mode. If no device is specifically requested, the driver will always try and find the first valid, free GPU it can run a process or thread on. If a GPU is busy and marked compute exclusive (either thread or process) or marked prohibited, then the driver will skip over it when trying to find a GPU to run on. If all GPUs are exclusive and occupied or prohibited, then the application will fail with a no valid device available error.
So in summary,for everything other than Hyper-Q devices, there is no performance gain in doing what you are asking about (quite the opposite) and I would expected it to break if you tried. A much saner approach would be to use compute exclusivity in combination with a resource managing task scheduler like Torque or one of the (former) Sun Grid Engine versions, which could schedule your processes to run in an orderly fashion according to the availability of GPUs. This is how most general purpose HPC clusters deal with scheduling in multi-gpu environments.

Simple Compute-Intensive CUDA Program

I'm preparing an acceptance test for a new machine with Nvidia graphics cards and I'd like a simple CUDA program that will fully exercise the GPU for a full day. The intent is to generate large amounts of heat and ensure the new machine is stable under the load. I'd like the code to be very easy to compile and run (no dependencies, no large input data sets), and also very easy to verify (small amounts of output). Also, I'd like it to be command-line only, no GUI (the test will have to be automated).
I was originally thinking of repeatedly running Vector Dot Products of large vectors. However, that's mostly memory-intensive. So if the GPUs are constantly waiting on memory accesses, then they probably aren't generating as much heat as they could.
I'm running on a CentOS Linux machine.
Does anyone have any suggestions?
You didn't mention which OS you are on.
Ideally, you would want to stress the floating point units, the logic/integer units, the GPU memory, the GPU voltage regulators (VRMs) and the main PSU. I don't think there is any single utility out there that does that.
Memory:
http://sourceforge.net/projects/cudagpumemtest/
Integer (?):
http://sourceforge.net/projects/cudalucas/
PSU and VRMs (In the past, this program could cause GPUs to run out-of-spec, breaking the card. I don't think that's the case anymore):
http://www.ozone3d.net/benchmarks/fur/

CUDA development on different cards?

I'm just starting to learn how to do CUDA development(using version 4) and was wondering if it was possible to develop on a different card then I plan to use? As I learn, it would be nice to know this so I can keep an eye out if differences are going to impact me.
I have a mid-2010 macbook pro with a Nvidia GeForce 320M graphic cards(its a pretty basic laptop integrated card) but I plan to run my code on EC2's NVIDIA Tesla “Fermi” M2050 GPUs. I'm wondering if its possible to develop locally on my laptop and then run it on EC2 with minimal changes(I'm doing this for a personal project and don't want to spend $2.4 for development).
A specific question is, I heard that recursions are supported in newer cards(and maybe not in my laptops), what if I run a recursion on my laptop gpu? will it kick out an error or will it run but not utilize the hardware features? (I don't need the specific answer to this, but this is kind of the what I'm getting at).
If this is going to be a problem, is there emulators for features not avail in my current card? or will the SDK emulate it for me?
Sorry if this question is too basic.
Yes, it's a pretty common practice to use different GPUs for development and production. nVidia GPU generations are backward-compatible, so if your program runs on older card (that is if 320M (CC1.3)), it would certainly run on M2070 (CC2.0)).
If you want to get maximum performance, you should, however, profile your program on same architecture you are going to use it, but usually everything works quite well without any changes when moving from 1.x to 2.0. Any emulator provide much worse view of what's going on than running on no-matter-how-old GPU.
Regarding recursion: an attempt to compile a program with obvious recursion for 1.3 architecture produces compile-time error:
nvcc rec.cu -arch=sm_13
./rec.cu(5): Error: Recursive function call is not supported yet: factorial(int)
In more complex cases the program might compile (I don't know how smart the compiler is in detecting recursions), but certainly won't work: in 1.x architecture there was no call stack, and all function calls were actually inlined, so recursion is technically impossible.
However, I would strongly recommend you to avoid recursion at any cost: it goes against GPGPU programming paradigm, and would certainly lead to very poor performance. Most algorithms are easily rewritten without the use of recursion, and it is much more preferable way to utilize them, not only on GPU, but on CPU as well.
The Cuda Version at first is not that important. More important are the compute capabilities of your card.
If you programm your kernels using cc 1.0 and they are scalable for the future you won't have any problems.
Choose yourself your minimum cc level you need for your application.
Calculate necessary parameters using properties and use ptx jit compilation:
If your kernel can handle arbitrary input sized data and your kernel launch configuration scales across thousands of threads it will scale across future versions.
In my projects all my kernels used a fixed number of threads per block which was equal to the number of resident threads per streaming multiprocessor divided by the number of resident blocks per streaming multiprocessor to reach 100% occupancy.
Some kernels need a multiple of two number of threads per block so I handled this case also since not for all cc versions the above equation guaranteed a multiple of two block size.
Some kernels used shared memory and its size was also deducted by the cc level properties.
This data was received using (cudaGetDeviceProperties) in a utility class and using ptx jit compiling my kernels worked without any changes on all devices. I programmed on a cc 1.1 device and ran tests on latest cuda cards without any changes!
All kernels were programmed to work with 64-bit length input data and utilizing all dimensions of the 3D Grid. (I am pretty sure in a year I will continue working on this project so this was necessary)
All my kernels except one did not exceeded the cc 1.0 register limit while having 100% occ. So if the used card cc was below 1.2 I added a maxregcount command to my kernel to still enforce 100% occ.
This does not guarantees best possible performance!
For possible best performance each kernel should be analyzed regarding its parameters and resources.
This maybe is not practicable for all applications and requirements
The NVidia Kepler K20 GPU available in Q4 2012 with CUDA 5 will support recursive algorithms.