Correct Sql Script for Formula - mysql

Can anyone help me write SQL script for the following formula?
If DEP = 1
If DROP 1
PLV = 334.86 * exp(0.3541 * ACTIVE_DAYS) + 0.25 * DROP + 20 * DEP
Else
If DROP < 0
PLV = DROP + 70 * ACTIVE_DAYS
Else
PLV = 0.25 * DROP + 70 * ACTIVE_DAYS
The SQL script which I have is the following
SELECT IF(dep=1, if(dep=1, (334.86 * exp(0.3541 * act_days)) +
(0.25 * 'drop') + (20 * dep),
if('drop'<0, 'drop' + (70 * act_days), (0.25 * 'drop') + (70 * act_days))),'0')
as PLV
But the above query is not right as something is missing where the formula says
Else
PLV = 0.26 * DROP
Thanks,

How about this:
CASE "DEP"
WHEN 1
THEN CASE
WHEN "DROP" = 1 THEN 334.86 * exp(0.3541 * "ACTIVE_DAYS") + 0.25 * "DROP" + 20 * "DEP"
WHEN "DROP" < 0 THEN "DROP" + 70 * "ACTIVE_DAYS"
ELSE 0.25 * "DROP" + 70 * "ACTIVE_DAYS"
END
END

Related

MySQL : UPDATE query and allows negative

The objective of this code is to deduct ringgit value and sen value in respective column and allows the value to be negative.
Assuming the price of item to purchase are RM1.50, and the users' balance are RM 0.80, RM 2.40 and RM -1.00.
The table should look like this :
Before purchase was made
Id
user
ringgit
sen
1
User A
0
80
2
User B
2
40
3
User C
-1
0
After purchase was made.
Id
user
ringgit
sen
1
User A
0
-70
2
User B
0
90
3
User C
-2
-50
I used code below to deduct user's balance. But the code only can deduct correctly if the user's balance is sufficient to purchase the item. (no negative value allowed)
UPDATE users SET ringgit = CASE
WHEN (sen - ".$senToDeduct." < 0) THEN (ringgit - ".$ringgitToDeduct." - 1)
WHEN (sen - ".$senToDeduct." >= 0) THEN (ringgit - ".$ringgitToDeduct.")
END,
sen =
CASE
WHEN (sen - ".$senToDeduct." < 0) THEN (100 - (".$senToDeduct." - sen))
WHEN (sen - ".$senToDeduct." >= 0) THEN (sen - ".$senToDeduct.") END WHERE Id = 1
I try to use code as follows :
UPDATE users SET ringgit =
CASE
WHEN (((ringgit * 100) + sen) - 150 >= 0) THEN LEFT(((ringgit * 100) + sen) - 150,char_length(((ringgit * 100) + sen) - 150)-2)
WHEN (((ringgit * 100) + sen) - 150 < 0) THEN - LEFT(((abs(ringgit) * 100) + abs(sen) - 150),char_length(((abs(ringgit) * 100) + abs(sen) - 250))-2)
END,
sen = CASE
WHEN (((ringgit * 100) + sen) - 150 >= 0) THEN RIGHT(((ringgit * 100) + sen) - 150,2)
WHEN (((ringgit * 100) + sen) - 150 < 0) THEN - RIGHT(((abs(ringgit) * 100) + abs(sen) - 150),2)
END
WHERE Id = 1
..but it does not work as the ringgit column already got affected after the query run SET ringgit =

MySQL - MOD() return 1 instead of 0

I have the following MySQL code that according to me should return 0:
mod( mod((180 / (30.4166666667 * 24 * 60)),1) * 30.4166666667,1) * 24 as HoursWorked
=> return 3.000
mod(mod(mod((180 / (30.4166666667 * 24 * 60)),1) * 30.4166666667,1) * 24,1) as ModHoursWorked
=> return 1
What am I missing?
the division must be floored
select mod(mod(mod(( floor(180 / (30.4166666667 * 24 * 60)) ),1) * 30.4166666667,1) * 24,1) ;
This worked:
SELECT truncate(mod(mod(mod((180 / (30.4166666667 * 24 * 60)),1) * 30.4166666667, 1) * 24, 1), 0) AS ModHoursWorked; => return 0

Converting Degrees/Minutes/Seconds to Decimals using MySQL

I'm using MySQL version: 5.7.22
I've got two columns Latitude and Longitude both in Degrees/Minutes/Seconds format that I want to convert to Decimal format ex: 48° 52.250' N to 48.93611111
I have the following script but I'm stuck at how to split the degrees minutes and seconds. I cannot hard-code the values as I've done here left(Latitude,2) since the degrees might have 3 decimals as well
SELECT Latitude,
left(Latitude, 2) +
(TRUNCATE((Latitude - TRUNCATE(Latitude)) * 100) / 60) +
(((Latitude * 100) - TRUNCATE(Latitude * 100)) * 100) / (60 * 60) AS DECIMAL_DEGREES
FROM small_ocean_data
The formula for the conversion is this: D + M/60 + S/3600 * -1 if direction in ['W', 'S'] else 1
Any help would be grateful!
Well if I use this formula of yours: D + M/60 + S/3600
Where I believe D is Degrees and M are Minutes and S are Seconds.
With this select:
select SUBSTRING_INDEX('48° 52.250', '°',1) +
(SUBSTRING_INDEX('48° 52.250',' ',1)/60) +
(SUBSTRING_INDEX('48° 52.250','.',1)/3600);
Or for your database:
select SUBSTRING_INDEX(Latitude, '°', 1) +
(SUBSTRING_INDEX(Latitude ,' ',1)/60) +
(SUBSTRING_INDEX(Latitude ,'.',1)/3600) "DECIMAL_DEGREES"
FROM small_ocean_data;
I get 48.81333333333333
48 + 0.8 + 0.013333333333333334
Here is the DEMO

MySQL weighted average in a single query

I have a MySQL table which looks like this:
id load_transit load_standby hours_transit hours_standby
1 40 20 8 4
2 30 15 10 10
3 50 10 3 9
I need to do the following calculations:
(intermediate calculations)
hours_transit_total = 8+10+3 = 21
hours_standby_total = 4+10+9 = 23
(desired result)
load_transit_weighted_mean = 40*(8/21) + 30*(10/21) + 50*(3/21) = 36.667
load_standby_weighted_mean = 20*(4/23) + 15*(10/23) + 10*(9/23) = 13.913
Is it possible to do this in a single query? What would the best design be?
Note that
40*(8/21) + 30*(10/21) + 50*(3/21) =
(40*8)/21 + (30*10)/21 + (50*3)/21 =
(40*8 + 30*10 + 50*3)/21
and
20*(4/23) + 15*(10/23) + 10*(9/23) =
(20*4)/23 + (15*10)/23 + (10*9)/23 =
(20*4 + 15*10 + 10*9)/23
Which allows you to get the results you want using
SELECT sum(hours_transit * load_transit) / sum(hours_transit),
sum(hours_standby * load_standby) / sum(hours_standby)
FROM your_table
I just had this same question and built this little query I think makes it clear how to find the weighted average in a single query:
select sum(balance), sum(rate * balance / 5200) as weighted_rate, -- what I want
-- what you cannot do: sum(rate * balance / sum(balance))
sum(balance * rate) / sum(balance) as weighted_rate_legit -- ah thank you transitive math properties
from (
select '4600' as balance, '2.05' as rate from dual
union all
select '600' as balance, '2.30' as rate from dual
) an_alias;

Code Golf: Ulam Spiral

Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
The Challenge
The shortest code by character count to output Ulam's spiral with a spiral size given by user input.
Ulam's spiral is one method to map prime numbers. The spiral starts from the number 1 being in the center (1 is not a prime) and generating a spiral around it, marking all prime numbers as the character '*'. A non prime will be printed as a space ' '.
alt text http://liranuna.com/junk/ulam.gif
Test cases
Input:
2
Output:
* *
*
*
Input:
3
Output:
* *
* *
* **
*
*
Input:
5
Output:
* *
* *
* * *
* * *
* ** *
* *
* *
* *
* *
Code count includes input/output (i.e full program).
Python - 203 Characters
_________________________________________________________
/x=input();y=x-1;w=x+y;A=[];R=range;k,j,s,t=R(4) \
| for i in R(2,w*w): |
| A+=[(x,y)]*all(i%d for d in R(2,i)) |
| if i==s:j,k,s,t=k,-j,s+t/2,t+1 |
| x+=j;y+=k |
| for y in R(w):print"".join(" *"[(x,y)in A]for x in R(w)) |
\_________________________________________________________/
\ ^__^
\ (oo)\_______
(__)\ )\/\
||----w |
|| ||
x=input();y=x-1;w=x+y
A=[];R=range;k,j,s,t=R(4)
for i in R(2,w*w):
A+=[(x,y)]*all(i%d for d in R(2,i))
if i==s:j,k=k,-j;s,t=s+t/2,t+1
x+=j;y+=k
for y in R(w):print"".join(" *"[(x,y)in A]for x in R(w))
How it works
The idea is to fill A with x,y coords that need to be printed as '*'
The algorithm starts at the cell corresponding to 2, so the special case of testing 1 for primality is avoided.
x,y is the cell of interest
j,k keep track of whether we need to inc or dec x or y to get to the next cell
s is the value of i at the next corner
t keeps track of the increment to s
all(i%d for d in R(2,i)) does the primality check
The last line is rather clumsy. It iterates over all the cells and decides whether to place a space or an asterisk
MATLAB: 182 167 156 characters
Script ulam.m:
A=1;b=ones(1,4);for i=0:(input('')-2),c=b(4);b=b+i*8+(2:2:8);A=[b(2):-1:b(1);(b(2)+1:b(3)-1)' A (b(1)-1:-1:c+1)';b(3):b(4)];end;disp(char(isprime(A)*10+32))
And formatted a little nicer:
A = 1;
b = ones(1,4);
for i = 0:(input('')-2),
c = b(4);
b = b+i*8+(2:2:8);
A = [b(2):-1:b(1); (b(2)+1:b(3)-1)' A (b(1)-1:-1:c+1)'; b(3):b(4)];
end;
disp(char(isprime(A)*10+32))
Test cases:
>> ulam
2
* *
*
*
>> ulam
3
* *
* *
* **
*
*
>> ulam
5
* *
* *
* * *
* * *
* ** *
* *
* *
* *
* *
Golfscript - 92 Characters
~.(:S+,:R{S\-:|;R{S-:$|>' *'1/[|$.|]2/#:d|~)$<!^=~:$;:y.*4*$-y-)2d*$y-*+:$,{)$\%!},,2==}%n}%
97 characters
~.(:S+,:R{S\-:|;R{S-:$|>' *'1/[|$.|]2/#:d|~)$<!^=~:$;:y.*4*$-y-)2d*$y-*+.1=3*+:$,2>{$\%!},!=}%n}%
99 characters
~.(:S+,{S-}%:R{~):|;R{:$|>' *'1/[|$.|]2/#:d|~)$<!^=~:$;:y.*4*$-y-)2d*$y-*+.1=3*+:$,2>{$\%!},!=}%n}%
100 characters
~:S.(+,{S(-}%:R{~):|;R{:$|>' *'1/[|$.|]2/#:d|~)$<!^=~:$;:y.*4*$-y-)2d*$y-*+.1=3*+:$,2>{$\%!},!=}%n}%
101 characters
~:S.(+,{S(-}%:R{~):v;R{:$v>:d;' *'1/[v$.v]2/v~)$<!d^=~:$;:y.*4*$-y-)2d*$y-*+.1=3*+:$,2>{$\%!},!=}%n}%
C, 208 206 201 200 199 196 194 193 194 193 188 185 183 180 176 Bytes
(if newlines are removed):
main(int u,char**b){
for(int v,x,y,S=v=**++b-48;--v>-S;putchar(10))
for(u=-S;++u<S;){
x=u;y=v;v>-u^v<u?:(x=v,y=u);
x=4*y*y-x-y+1+2*(v<u)*(x-y);
for(y=1;x%++y;);
putchar(y^x?32:42);}}
Compiled with
> gcc -std=c99 -o ulam ulam.c
Warning. This program is slow, because is does a trial division up to 2^31. But is does produce the required output:
* *
* *
* * *
* * *
* ** *
* *
* *
* *
* *
In nicely formatted C and with redundant #includes:
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char** argv) {
int u,v,x,y,d,S = atoi(argv[1]);
/* v is the y coordinate of grid */
for (v=S; v>=-S; --v)
/* u is the x coordinate. The second operand (!putchar...) of the boolean or
* is only ececuted a a end of a x line and it prints a newline (10) */
for (u=-S; u<=S || !putchar(10); ++u) {
/* x,y are u,v after "normalizing" the coordintes to quadrant 0
normalizing is done with the two comparisions, swapping and and
an additional term later */
d = v<u;
x=u;
y=v;
if (v<=-u ^ d) {
x=v;
y=u;
}
/* reuse x, x is now the number at grid (u,v) */
x = 4*y*y -x-y+1 +2*d*(x-y);
/* primality test, y resused as loop variable, won't win a speed contest */
for (y=2; y<x && x%y; ++y)
;
putchar(y!=x?' ':'*');
}
}
It works by transforming the coordinates of the grid to the appropriate number and then performing the primality test, intead of drawing in a snake-like manner. The different equations for the four "quadrants" can be collapsed into one with swapping x and y and an additional term for "backward counting".
Ruby 1.8.7, 194 chars
n=2*gets.to_i-1
r=n**2
l,c=[nil]*r,r/2
r.times{|i|l[c]=i+1;c=i==0||l[c-n]&&!l[c+1]?c+1:l[c-1]&&!l[c-n]?c-n:l[c+n]?c-1:c+n}
r.times{|i|print"1"*l[i]!~/^1?$|^(11+?)\1+$/?'*':' ',i%n==n-1?"\n":''}
For some reason, ruby1.9 wants another space on line 4:
r.times{|i|l[c]=i+1;c=i==0||l[c-n]&&!l[c+1]?c+1:l[c-1]&&!l[c-n]?c-n :l[c+n]?c-1:c+n}
Python - 171
drhirsch's C ported to python.
S=input();R=range(-S+1,S)
for w in R:
p="";v=-w
for u in R:d=v<u;x,y=[(u,v),(v,u)][(w>=u)^d];x=4*y*y-x-y+1+2*d*(x-y);p+=" *"[(x>1)*all(x%f for f in range(2,x))]
print p
echo 20 |python ulam.py
* * * * * *
* * * * * *
* * * * *
* * * * * *
* * * *
* * * * * *
* * * * * *
* * * * * * *
* * * * * * *
* * * * *
* * * * * * * *
* * * * * * *
* * * * *
* * * * * *
* * * * * * * * *
* * *
* * * * * * * * * *
* * * * * * * * * *
* * * *
* * ** * * * * * *
* * * *
* *
* * * * * * * * * * *
* * * * * * * *
* *
* * * * * * * *
* * * * * * *
* * * * *
* * * * * *
* * * * * * * * *
* * * *
* * * * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * *
* * * * * *
* *
* * * * * *
MATLAB, 56 characters
based on #gnovice solution, improved by using MATLAB's spiral function :)
disp(char(isprime(flipud(spiral(2*input('')-1)))*10+32))
Test Cases:
>> disp(char(isprime(flipud(spiral(2*input('')-1)))*10+32))
2
* *
*
*
>> disp(char(isprime(flipud(spiral(2*input('')-1)))*10+32))
3
* *
* *
* **
*
*
>> disp(char(isprime(flipud(spiral(2*input('')-1)))*10+32))
5
* *
* *
* * *
* * *
* ** *
* *
* *
* *
* *
J solution: 197 173 165 161 bytes (so far)
this does not use the method mentioned in the comments to the OP
p=:j./<.-:$g=:1$~(,])n=:<:+:".1!:1]3
d=:j.r=:1
(m=:3 :'if.y<*:n do.if.0=t=:<:t do.d=:d*0j1[t=:<.r=:r+0.5 end.m>:y[g=:y(<+.p=:p+d)}g end.')t=:2
1!:2&2(1 p:g){' *'
My first code golf!
Ruby, 309 301 283 271 265 characters
s=gets.to_i;d=s*2-1;a=Array.new(d){' '*d}
e=d**2;p='*'*e;2.upto(e){|i|2.upto(e/i){|j|p[i*j-1]=' '}};p[0]=' '
s.times{|i|k=s-i-1;l=2*i;m=l+1;o=l-1
m.times{|j|n=j+k;a[k][n]=p[l**2-j];a[n][k]=p[l**2+j];a[k+l][n]=p[m**2-m+j]}
l.times{|j|a[j+k][k+l]=p[o**2+o-j]}}
puts a
Python 2.x, 220C 213C 207C 204C 201C 198C 196C 188C
Special thanks to gnibbler for some hints in #stackoverflow on Freenode. Output includes a leading and trailing newline.
import math
v=input()*2
w=v-1
a=['\n']*w*v
p=w*v/2
for c in range(1,w*w):a[p]=' *'[(c>1)*all(c%d for d in range(2,c))];x=int(math.sqrt(c-1));p+=(-1)**x*((x*x<c<=x*x+x)*w+1)
print''.join(a)
(Python 3 compatibility would require extra chars; this uses input, the print statement and / for integer division.)
Ruby - 158 Characters
Same algorithm as this one, just the prime test is different
p=(v=(w=gets.to_i*2)-1)*w/2-1
a='
'*v*w
d=0
(v*v).times{|i|a[p]="1"*(i+1)!~/^1?$|^(11+?)\1+$/?42:32;d=(a[p+(z=[w,-1,-w,1])[d-1]]<32)?(d-1):d%4;p+=z[d]}
puts a
Haskell - 224 characters
(%)=zipWith(++)
r x=[x]
l 1=r[1]
l n=r[a,a-1..b]++(m r[a+1..]%l s%m r[b-1,b-2..])++r[d-s*2..d]where{d=(n*2-1)^2;b=d-s*6;a=d-s*4;s=n-1}
p[_]='*'
p _=' '
i n=p[x|x<-[2..n],n`mod`x==0]
m=map
main=interact$unlines.m(m i).l.read
i'm not the best at haskell so there is probably some more shrinkage that can occur here
output from echo 6 | runghc ulam.hs
* *
* *
* * * *
* * *
* * *
* ** *
* * *
* *
* * * *
* *
*
this is a different algorithm (similar to #drhirsch's) unfortunately i cannot seem to get it below 239 characters
p[_]='*'
p _=' '
main=interact$unlines.u.read
i n=p[x|x<-[2..n],n`mod`x==0]
u(n+1)=map(map(i.f.o).zip[-n..n].replicate((n+1)*2-1))[n,n-1..(-n)]
f(x,y,z)=4*y*y-x-y+1+if z then 2*(x-y)else 0
o(u,v)=if(v> -u)==(v<u)then(v,u,v<u)else(u,v,v<u)
First post! (oh wait, this isn't SlashDot?)
My entry for Team Clojure, 685 528 characters.
(defn ulam[n] (let [z (atom [1 0 0 {[0 0] " "}])
m [[0 1 1 0][2 -1 0 -1][2 0 -1 0][2 0 0 1][2 0 1 0]]
p (fn [x] (if (some #(zero? (rem x %)) (range 2 x)) " " "*"))]
(doseq [r (range 1 (inc n)) q (range (count m)) [a b dx dy] [(m q)]
s (range (+ (* a r) b))]
(let [i (inc (first #z)) x (+ dx (#z 1)) y (+ dy (#z 2))]
(reset! z [i x y (assoc (last #z) [x y] (p i))])))
(doseq [y (range (- n) (inc n))] (doseq [x (range (- n) (inc n))]
(print ((last #z) [x y]))) (println))))
(ulam (dec (.nextInt (java.util.Scanner. System/in))))---
Input:
5
Output:
* *
* *
* * *
* * *
* ** *
* *
* *
* *
* *
Input:
10
Output:
* * * *
* * *
* * *
* * *
* * * *
* * *
* * * * * *
* * * * *
* * *
* * ** * * *
* * *
* *
* * * * * *
* * * *
* *
* * * * *
* *
* * *
* * * *
Not as beautiful as the previous C entry, but here's mine.
note: I'm posting because it takes a different approach than the previous one, mainly
there's no coordinate remapping
it gives the same results as the tests
it works with input > 9 (two digits - no -47 trick)
enum directions_e { dx, up, sx, dn } direction;
int main (int argc, char **argv) {
int len = atoi(argv[1]);
int offset = 2*len-1;
int size = offset*offset;
char *matrix = malloc(size);
int startfrom = 2*len*(len-1);
matrix[startfrom] = 1;
int next = startfrom;
int count = 1;
int i, step = 1;
direction = dx ;
for (;; step++ )
do {
for ( i = 0 ; i < step ; i++ ) {
switch ( direction ) {
case dx:
next++;
break;
case up:
next = next - offset;
break;
case sx:
next--;
break;
case dn:
next = next + offset;
}
int div = ++count;
do {
div--;
} while ( count % div );
if ( div > 1 ) {
matrix[next] = ' ';
}
else {
matrix[next] = '*';
}
if (count >= size) goto dontusegoto;
}
direction = ++direction % 4;
} while ( direction %2);
dontusegoto:
for ( i = 0 ; i < size ; i++ ) {
putchar(matrix[i]);
if ( !((i+1) % offset) ) putchar('\n');
}
return 0;
}
which, adequately translated in unreadable C, becomes 339 chars.
compile with: gcc -o ulam_compr ulam_compr.c works on osx
i686-apple-darwin9-gcc-4.0.1 (GCC) 4.0.1 (Apple Inc. build 5465)
and debian Lenny.
main(int a,char**v){
int l=atoi(v[1]),o=2*l-1,z=o*o,n=2*l*(l-1),c=1,i,s=1,d;
char*m=malloc(z);
m[n]=1;
for(;;s++)do{
for(i=0;i<s;i++){
if(d==0)n++;
else if(d==1)n-=o;
else if(d==2)n--;
else n+=o;
int j=++c;
while(c%--j);
if(j>1)m[n]=' ';else m[n]='*';
if(c>=z)goto g;
}d=++d%4;}while(d%2);
g:for(i=0;i<z;i++){
putchar(m[i]);
if(!((i+1)%o))putchar('\n');
}
}
Here is some output:
$ ./ulam_compr 3
* *
* *
* **
*
*
$ ./ulam_compr 5
* *
* *
* * *
* * *
* ** *
* *
* *
* *
* *
Python - 176
This one starts with a big long list of newline characters and replaces all of them except for the ones that are needed at the end of the lines.
Starting at the centre, the algorithm peeps around the lefthand corner at each step. If there is a newline character there, turn left otherwise keep going forward.
w=input()*2;v=w-1;a=['\n']*v*w;p=w/2*v-1;d=0;z=[w,-1,-w,1]
for i in range(v*v):a[p]=' *'[i and all((i+1)%f for f in range(2,i))];d=d%4-(a[p+z[d-1]]<' ');p+=z[d]
print"".join(a)
Python - 177
Using a string avoids "join" but ends up one byte longer since the string is immutable
w=input()*2;v=w-1;a='\n'*v*w;p=w/2*v-1;d=0;z=[w,-1,-w,1]
for i in range(v*v):a=a[:p]+' *'[i and all((i+1)%f for f in range(2,i))]+a[p+1:];d=d%4-(a[p+z[d-1]]<' ');p+=z[d]
print a
Python, 299 characters:
from sys import *
def t(n):
if n==1:return ' '
for i in range(2,n):
if n%i==0:return ' '
return '*'
i=int(stdin.readline())
s=i*2-1
o=['\n']*(s+1)*s
c=1
g=2
d=0
p=(s+2)*(i-1)
for n in range(s**2):
o[p]=t(n+1);p+=[1,-s-1,-1,s+1][d%4];g-=1
if g==c:d+=1
if g==0:d+=1;c+=1;g=2*c
print ''.join(o)
Lua, 302 characters
s=...t={" "}n=2 function p()for j=2,n-1 do if n%j==0 then n=n+1 return" "end
end n=n+1 return"*"end for i=2,s do for k=#t,1,-1 do t[k+1]=t[k]..p()end
t[1]=""for k=1,i*2-1 do t[1]=p()..t[1]end for k=2,#t do t[k]=p()..t[k]end
t[#t+1]=""for k=1,i*2-1 do t[#t]=t[#t]..p()end end print(table.concat(t,"\n"))
Output from lua ulam.lua 6:
* *
* *
* * * *
* * *
* * *
* ** *
* * *
* *
* * * *
* *
*
Python 284 266 256 243 242 240 char
I wanted to try recursion, I'm sure it may be heavily shortened:
r=range
def f(n):
if n<2:return[[4]]
s=2*n-1;z=s*s;c=[r(z-2*s+2,z-3*s+2,-1)];e=1
for i in f(n-1):c+=[[c[0][0]+e]+i+[c[0][-1]-e]];e+=1
c+=[r(z-s+1,z+1)];return c
for l in f(input()):print''.join(' *'[all(x%f for f in r(2,x))]for x in l)
edited under suggestion in comments
Mathematica 243
l = Length; t = Table; f = Flatten;
h#m_ := With[{x = l#m[[1]], y = l#m}, f[{{Reverse#t[w + y + (x y), {w, x + 2}]},
t[f[{(x y) + x + y + 2 + w, m[[w]], (x y) + y - w + 1}], {w, y}],
{t[2 + y + x + y + w + (x y), {w, x + 2}]}}, 1]];
m_~g~z_ := Nest[h, m, z] /. {_?PrimeQ -> "\[Bullet]", _Integer -> ""};
Grid[{{1}}~g~#, Frame -> All] &
Usage
13 windings:
Grid[{{1}}~g~#, Frame -> All] &[13]