Mysql optimization for simple records - what is best? - mysql

I am developing a system that will eventually have millions of users. Each user of the system may have acces to different 'tabs' in the system. I am tracking this with a table called usertabs. There are two ways to handle this.
Way 1: A single row for each user containing userid and tab1-tab10 as int columns.
The advantage of this system is that the query to get a single row by userid is very fast while the disadvantage is that the 'empty' columns take up space. Another disadvantage is that when I needed to add a new tab, I would have to re-org the entire table which could be tedious if there are millions of records. But this wouldn't happen very often.
Way 2: A single row contains userid and tabid and that is all. There would be up to 10 rows per user.
The advantage of this system is easy sharding or other mechanism for optimized storage and no wasted space. Rows only exist when necessary. The disadvantage is up to 10 rows must be read every time I access a record. If these rows are scattered, they may be slower to access or maybe faster, depending on how they were stored?
My programmer side is leaning towards Way 1 while my big data side is leaning towards Way 2.
Which would you choose? Why?

Premature optimization, and all that...
Option 1 may seem "easier", but you've already identified the major downside - extensibility is a huge pain.
I also really doubt that it would be faster than option 2 - databases are pretty much designed specifically to find related bits of data, and finding 10 records rather than 1 record is almost certainly not going to make a difference you can measure.
"Scattered" records don't really matter, the database uses indices to be able to retrieve data really quickly, regardless of their physical location.
This does, of course, depend on using indices for foreign keys, as #Barmar comments.

If these rows are scattered, they may be slower to access or maybe faster, depending on how they were stored?
They don't have to be scattered if you use clustering correctly.
InnoDB tables are always clustered and if your child table's PK1 looks similar to: {user_id, tab_id}2, this will automatically store tabs belonging to the same user physically close together, minimizing I/O during querying for "tabs of the give user".
OTOH, if your child PK is: {tab_id, user_id}, this will store users connected to the same tab physically close together, making queries such as: "give me all users connected to given tab" very fast.
Unfortunately MySQL doesn't support leading-edge index compression (a-la Oracle), so you'll still pay the storage (and cache) price for repeating all these user_ids (or tab_ids in the second case) in the child table, but despite that, I'd still go for the solution (2) for flexibility and (probably) ease of querying.
1 Which InnoDB automatically uses as clustering key.
2 I.e. user's PK is at the leading edge of the child table's PK.

Related

Distributed database use cases

At the moment i do have a mysql database, and the data iam collecting is 5 Terrabyte a year. I will save my data all the time, i dont think i want to delete something very early.
I ask myself if i should use a distributed database because my data will grow every year. And after 5 years i will have 25 Terrabyte without index. (just calculated the raw data i save every day)
i have 5 tables and the most queries are joins over multiple tables.
And i need to access mostly 1-2 columns over many rows at a specific timestamp.
Would a distributed database be a prefered database than only a single mysql database?
Paritioning will be difficult, because all my tables are really high connected.
I know it depends on the queries and on the database table design and i can also have a distributed mysql database.
i just want to know when i should think about a distributed database.
Would this be a use case? or could mysql handle this large dataset?
EDIT:
in average i will have 1500 clients writing data per second, they affect all tables.
i just need the old dataset for analytics. Like machine learning and
pattern matching.
also a client should be able to see the historical data
Your question is about "distributed", but I see more serious questions that need answering first.
"Highly indexed 5TB" will slow to a crawl. An index is a BTree. To add a new row to an index means locating the block in that tree where the item belongs, then read-modify-write that block. But...
If the index is AUTO_INCREMENT or TIMESTAMP (or similar things), then the blocks being modified are 'always' at the 'end' of the BTree. So virtually all of the reads and writes are cacheable. That is, updating such an index is very low overhead.
If the index is 'random', such as UUID, GUID, md5, etc, then the block to update is rarely found in cache. That is, updating this one index for this one row is likely to cost a pair of IOPs. Even with SSDs, you are likely to not keep up. (Assuming you don't have several TB of RAM.)
If the index is somewhere between sequential and random (say, some kind of "name"), then there might be thousands of "hot spots" in the BTree, and these might be cacheable.
Bottom line: If you cannot avoid random indexes, your project is doomed.
Next issue... The queries. If you need to scan 5TB for a SELECT, that will take time. If this is a Data Warehouse type of application and you need to, say, summarize last month's data, then building and maintaining Summary Tables will be very important. Furthermore, this can obviate the need for some of the indexes on the 'Fact' table, thereby possibly eliminating my concern about indexes.
"See the historical data" -- See individual rows? Or just see summary info? (Again, if it is like DW, one rarely needs to see old datapoints.) If summarization will suffice, then most of the 25TB can be avoided.
Do you have a machine with 25TB online? If not, that may force you to have multiple machines. But then you will have the complexity of running queries across them.
5TB is estimated from INT = 4 bytes, etc? If using InnoDB, you need to multiple by 2 to 3 to get the actual footprint. Furthermore, if you need to modify a table in the future, such action probably needs to copy the table over, so that doubles the disk space needed. Your 25TB becomes more like 100TB of storage.
PARTITIONing has very few valid use cases, so I don't want to discuss that until knowing more.
"Sharding" (splitting across machines) is possibly what you mean by "distributed". With multiple tables, you need to think hard about how to split up the data so that JOINs will continue to work.
The 5TB is huge -- Do everything you can to shrink it -- Use smaller datatypes, normalize, etc. But don't "over-normalize", you could end up with terrible performance. (We need to see the queries!)
There are many directions to take a multi-TB db. We really need more info about your tables and queries before we can be more specific.
It's really impossible to provide a specific answer to such a wide question.
In general, I recommend only worrying about performance once you can prove that you have a problem; if you're worried, it's much better to set up a test rig, populate it with representative data, and see what happens.
"Can MySQL handle 5 - 25 TB of data?" Yes. No. Depends. If - as you say - you have no indexes, your queries may slow down a long time before you get to 5TB. If it's 5TB / year of highly indexable data it might be fine.
The most common solution to this question is to keep a "transactional" database for all the "regular" work, and a datawarehouse for reporting, using a regular Extract/Transform/Load job to move the data across, and archive it. The data warehouse typically has a schema optimized for querying, usually entirely unlike the original schema.
If you want to keep everything logically consistent, you might use sharding and clustering - a sort-a-kind-a out of the box feature of MySQL.
I would not, however, roll my own "distributed database" solution. It's much harder than you might think.

Best practices for creating a huge SQL table

I want to create a table about "users" for each of the 50 states. Each state has about 2GB worth of data. Which option sounds better?
Create one table called "users" that will be 100GB large OR
Create 50 separate tables called "users_{state}", each which will be 2GB large
I'm looking at two things: performance, and style (best practices)
I'm also running RDS on AWS, and I have enough storage space. Any thoughts?
EDIT: From the looks of it, I will not need info from multiples states at the same time (i.e. won't need to frequently join tables if I go with Option 2). Here is a common use case: The front-end passes a state id to the back-end, and based on that id, I need to query data from the db regarding the specified state, and return data back to front-end.
Are the 50 states truly independent in your business logic? Meaning your queries would only need to run over one given state most of the time? If so, splitting by state is probably a good choice. In this case you would only need joining in relatively rarer queries like reporting queries and such.
EDIT: Based on your recent edit, this first option is the route I would recommend. You will get better performance from the table partitioning when no joining is required, and there are multiple other benefits to having the smaller partitioned tables like this.
If your queries would commonly require joining across a majority of the states, then you should definitely not partition like this. You'd be better off with one large table and just build the appropriate indices needed for performance. Most modern enterprise DB solutions are capable of handling the marginal performance impact going from 2GB to 100GB just fine (with proper indexing).
But if your queries on average would need to join results from only a handful of states (say no more than 5-10 or so), the optimal solution is a more complex gray area. You will likely be able to extract better performance from the partitioned tables with joining, but it may make the code and/or queries (and all coming maintenance) noticeably more complex.
Note that my answer assumes the more common access frequency breakdowns: high reads, moderate updates, low creates/deletes. Also, if performance on big data is your primary concern, you may want to check out NoSQL (for example, Amazon AWS DynamoDB), but this would be an invasive and fundamental departure from the relational system. But the NoSQL performance benefits can be absolutely dramatic.
Without knowing more of your model, it will be difficult for anyone to make judgement calls about performance, etc. However, from a data modelling point of view, when thinking about a normalized model I would expect to see a User table with a column (or columns, in the case of a compound key) which hold the foreign key to a State table. If a User could be associated with more than one state, I would expect another table (UserState) to be created instead, and this would hold the foreign keys to both User and State, with any other information about that relationship (for instance, start and end dates for time slicing, showing the timespan during which the User and the State were associated).
Rather than splitting the data into separate tables, if you find that you have performance issues you could use partitioning to split the User data by state while leaving it within a single table. I don't use MySQL, but a quick Google turned up plenty of reference information on how to implement partitioning within MySQL.
Until you try building and running this, I don't think you know whether you have a performance problem or not. If you do, following the above design you can apply partitioning after the fact and not need to change your front-end queries. Also, this solution won't be problematic if it turns out you do need information for multiple states at the same time, and won't cause you anywhere near as much grief if you need to look at User by some aspect other than State.

Best database design for storing a high number columns?

Situation: We are working on a project that reads datafeeds into the database at our company. These datafeeds can contain a high number of fields. We match those fields with certain columns.
At this moment we have about 120 types of fields. Those all needs a column. We need to be able to filter and sort all columns.
The problem is that I'm unsure what database design would be best for this. I'm using MySQL for the job but I'm are open for suggestions. At this moment I'm planning to make a table with all 120 columns since that is the most natural way to do things.
Options: My other options are a meta table that stores key and values. Or using a document based database so I have access to a variable schema and scale it when needed.
Question:
What is the best way to store all this data? The row count could go up to 100k rows and I need a storage that can select, sort and filter really fast.
Update:
Some more information about usage. XML feeds will be generated live from this table. we are talking about 100 - 500 requests per hours but this will be growing. The fields will not change regularly but it could be once every 6 months. We will also be updating the datafeeds daily. So checking if items are updated and deleting old and adding new ones.
120 columns at 100k rows is not enough information, that only really gives one of the metrics: size. The other is transactions. How many transactions per second are you talking about here?
Is it a nightly update with a manager running a report once a week, or a million page-requests an hour?
I don't generally need to start looking at 'clever' solutions until hitting a 10m record table, or hundreds of queries per second.
Oh, and do not use a Key-Value pair table. They are not great in a relational database, so stick to proper typed fields.
I personally would recommend sticking to a conventional one-column-per-field approach and only deviate from this if testing shows it really isn't right.
With regards to retrieval, if the INSERTS/UPDATES are only happening daily, then I think some careful indexing on the server side, and good caching wherever the XML is generated, should reduce the server hit a good amount.
For example, you say 'we will be updating the datafeeds daily', then there shouldn't be any need to query the database every time. Although, 1000 per hour is only 17 per minute. That probably rounds down to nothing.
I'm working on a similar project right now, downloading dumps from the net and loading them into the database, merging changes into the main table and properly adjusting the dictionary tables.
First, you know the data you'll be working with. So it is necessary to analyze it in advance and pick the best table/column layout. If you have all your 120 columns containing textual data, then a single row will take several K-bytes of disk space. In such situation you will want to make all queries highly selective, so that indexes are used to minimize IO. Full scans might take significant time with such a design. You've said nothing about how big your 500/h requests will be, will each request extract a single row, a small bunch of rows or a big portion (up to whole table)?
Second, looking at the data, you might outline a number of columns that will have a limited set of values. I prefer to do the following transformation for such columns:
setup a dictionary table, making an integer PK for it;
replace the actual value in a master table's column with PK from the dictionary.
The transformation is done by triggers written in C, so although it gives me upload penalty, I do have some benefits:
decreased total size of the database and master table;
better options for the database and OS to cache frequently accessed data blocks;
better query performance.
Third, try to split data according to the extracts you'll be doing. Quite often it turns out that only 30-40% of the fields in the table are typically being used by the all queries, the rest 60-70% are evenly distributed among all of them and used partially. In this case I would recommend splitting main table accordingly: extract the fields that are always used into single "master" table, and create another one for the rest of the fields. In fact, you can have several "another ones", logically grouping data in a separate tables.
In my practice we've had a table that contained customer detailed information: name details, addresses details, status details, banking details, billing details, financial details and a set of custom comments. All queries on such a table were expensive ones, as it was used in the majority of our reports (reports typically perform Full scans). Splitting this table into a set of smaller ones and building a view with rules on top of them (to make external application happy) we've managed to gain a pleasant performance boost (sorry, don't have numbers any longer).
To summarize: you know the data you'll be working with and you know the queries that will be used to access your database, analyze and design accordingly.

Performance of additional columns vs additional rows

I have a question about table design and performance. I have a number of analytical machines that produce varying amounts of data (which have been stored in text files up to this point via the dos programs which run the machines). I have decided to modernise and create a new database to store all the machine results in.
I have created separate tables to store results by type e.g. all results from the balance machine get stored in the balance results table etc.
I have a common results table format for each machine which is as follows:
ClientRequestID PK
SampleNumber PK
MeasureDtTm
Operator
AnalyteName
UnitOfMeasure
Value
A typical ClientRequest might have 50 samples which need to tested by various machines. Each machine records only 1 line per sample, so there are apprx 50 rows per table associated with any given ClientRequest.
This is fine for all machines except one!
It measures 20-30 analytes per sample (and just spits them out in one long row), whereas all the other machines, I am only ever measuring 1 analyte per RequestID/SampleNumber.
If I stick to this format, this machine will generate over a miliion rows per year, because every sample can have as many as 30 measurements.
My other tables will only grow at a rate of 3000-5000 rows per year.
So after all that, my question is this:
Am I better to stick to the common format for this table, and have bucket loads of rows, or is it better to just add extra columns to represent each Analyte, such that it would generate only 1 row per sample (like the other tables). The machine can only ever measure a max of 30 analytes (and a $250k per machine, I won;t be getting another in my lifetime).
All I am worried about is reporting performance and online editing. In both cases, the PK: RequestID and SampleNumber remain the same, so I guess it's just a matter of what would load quicker. I know the multiple column approach is considered woeful from a design perspective, but would it yield better performance in this instance?
BTW the database is MS Jet / Access 2010
Any help would be greatly appreciated!
Millions of rows in a Jet/ACE database are not a problem if the rows have few columns.
However, my concern is how these records are inserted -- is this real-time data collection? If so, I'd suggest this is probably more than Jet/ACE can handle reliably.
I'm an experienced Access developer who is a big fan of Jet/ACE, but from what I know about your project, if I was starting it out, I'd definitely choose a server database from the get go, not because Jet/ACE likely can't handle it right now, but because I'm thinking in terms of 10 years down the road when this app might still be in use (remember Y2K, which was mostly a problem of apps that were designed with planned obsolescence in mind, but were never replaced).
You can decouple the AnalyteName column from the 'common results' table:
-- Table Common Results
ClientRequestID PK SampleNumber PK MeasureDtTm Operator UnitOfMeasure Value
-- Table Results Analyte
ClientRequestID PK SampleNumber PK AnalyteName
You join on the PK (Request + Sample.) That way you don't duplicate all the rest of the rows needlessly, can avoid the join in the queries where you don't require the AnalyteName to be used, can support extra Analytes and is overall saner. Unless you really start having a performance problem, this is the approach I'd follow.
Heck, even if you start having performance problems, I'd first move to a real database to see if that fixes the problems before adding columns to the results table.

How can I fix this scaling issue with soft deleting items?

I have a database where most tables have a delete flag for the tables. So the system soft deletes items (so they are no longer accessible unless by admins for example)
What worries me is in a few years, when the tables are much larger, is that the overall speed of the system is going to be reduced.
What can I do to counteract effects like that.
Do I index the delete field?
Do I move the deleted data to an identical delete table and back when undeleted?
Do I spread out the data over a few MySQL servers over time? (based on growth)
I'd appreciate any and all suggestions or stories.
UPDATE:
So partitioning seems to be the key to this. But wouldn't partitioning just create two "tables", one with the deleted items and one without the deleted items.
So over time the deleted partition will grow large and the occasional fetches from it will be slow (and slower over time)
Would the speed difference be something I should worry about? Since I fetch most (if not all) data by some key value (some are searches but they can be slow for this setup)
I'd partition the table on the DELETE flag.
The deleted rows will be physically kept in other place, but from SQL's point of view the table remains the same.
Oh, hell yes, index the delete field. You're going to be querying against it all the time, right? Compound indexes with other fields you query against a lot, like parent IDs, might also be a good idea.
Arguably, this decision could be made later if and only if performance problems actually appear. It very much depends on how many rows are added at what rate, your box specs, etc. Obviously, the level of abstraction in your application (and the limitations of any libraries you are using) will help determine how difficult such a change will be.
If it becomes a problem, or you are certain that it will be, start by partitioning on the deleted flag between two tables, one that holds current data and one that holds historical/deleted data. IF, as you said, the "deleted" data will only be available to administrators, it is reasonable to suppose that (in most applications) the total number of users (here limited only to admins) will not be sufficient to cause a problem. This means that your admins might need to wait a little while longer when searching that particular table, but your user base (arguably more important in most applications) will experience far less latency. If performance becomes unacceptable for the admins, you will likely want to index the user_id (or transaction_id or whatever) field you access the deleted records by (I generally index every field by which I access the table, but at certain scale there can be trade-offs regarding which indexes are most worthwhile).
Depending on how the data is accessed, there are other simple tricks you can employ. If the admin is looking for a specific record most of the time (as opposed to, say, reading a "history" or "log" of user activity), one can often assume that more recent records will be looked at more often than old records. Some DBs include tuning options for making recent records easier to find than older records, but you'll have to look it up for your particular database. Failing that, you can manually do it. The easiest way would be to have an ancient_history table that contains all records older than n days, weeks or months, depending on your constraints and suspected usage patterns. Newer data then lives inside a much smaller table. Even if the admin is going to "browse" all the records rather than searching for a specific one, you can start by showing the first n days and have a link to see all days should they not find what they are looking for (eg, most online banking applications that lets you browse transactions but shows only the first 30 days of history unless you request otherwise.)
Hopefully you can avoid having to go a step further, and sharding on user_id or some such scheme. Depending on the scale of the rest of your application, you might have to do this anyway. Unless you are positive that you will need to, I strongly suggest using vertical partitioning first (eg, keeping your forum_posts on a separate machine than your sales_records), as it is FAR easier to setup and maintain. If you end up needing to shard on user_id, I suggest using google ;-]
Good luck. BTW, I'm not a DBA so take this with a grain of salt.