Multilingual MySQL Database Structure for huge data - mysql

I'm looking for some advice regarding a multilingual MySQL Database Structure which can handle huge amounts of data.
We are using the following method at the moment:
Articles <- Article_translations -> Languages
id id id
date language_id (fk) locale
category article_id (fk)
content
Ok, lets just say we've got like 100.000 Articles and 5 languages...well..you see the problem. The larger the data, the slower the database (just a guess here, but complex JOIN queries which are absolutely necessary probably won't be O(log(n)) but rather something like O(n^2)).
Our current solution is to split the Article_translations into [locale]_article_translations (e.g. en_us_article_translation) in which case we would need to synchronize the structure between those tables easily. Is this an appropriate method to solve this problem or are there better ones? If this is a good solution, is there something out there which could help to monitor changes (only structural, no data synch!) and synchronize those structures?

you are half right, larger data slower database, but if the DB don't have a good design it will be slow even with small data.
I can't tell you what is the best way or the best solution, remember that you need to make multiple things to find the "best solution". I just can recommend you some tools and some tips that could help you.
First, check your index, index types, no only PK and FK, you need also see which type of index do you need, I.E, do you need text index? or hashtree??.
Check also your engine, MyISAM or InnoDB?. You said that you split the table, check this post about split.
Also your query will be faster if you avoid things like '%word%' remember that a bad query will make a huge difference about time of response.
You can use Show create table or Describe select ...... or explain to see what's going on, or use the command benchmark to see the approximate time of a function that you are applying to improve it
Some tools for MySQL I'll recommend you to take a look to this program that will help you with this part of performance.
Mysqlslap (it's like benchmark but you can customize more the result).
SysBench (test CPUperformance, I/O performance, mutex contention, memory speed, database performance).
Mysqltuner (with this you can analize general statistics, Storage engine Statistics, performance metrics).
mk-query-profiler (perform analysis of a SQL Statement).
mysqldumpslow (good to know witch queries are causing problems).

Assuming if you tune your query properly
Check query execution plan with the large set of data
Make sure if you use DB level parameter as "large set" instead of row level
See if you make your table denormalized(or vise versa) enough.
I would suggest belows although I am not sure which version of MySQL your are using
Partitioing at DB level
Fast hard disk in the DB server
I would suggest to use partitioning first and then you might consider to upgrade hard disk.
Partitioning
Partitioning is data spliting provided by database level.
Based on your query usage, you can divide data, for example, by language in your case.
The good thing to use DB partitioning is that
it could be treated by a single table from application side
Depends on the data volumn and frequncy, it can be rearranged by DB level. No impact to the apps.
Hard disk quality
Also the hard disk quality is important to handle large set of data.
Even if the query is tunned at best, if you deal with lots of data in a single query, you need fast data access. But this is costy.

Related

RDBMS for extremely large data sets - what are people using?

I have to perform some serious data mining on very large data sets stored in MySQL db. However, queries that require a bit more than a basic SELECT * FROM X WHERE ... tend to become rather inefficient since they return results on the order of 10e6 or more, especially when JOIN on one or more tables is introduced - think of joining 2 or more tables containing several tens of millions rows (after filtering data), which is something that pretty much happens on every query. More than often we'd like to run aggregate functions on these (sum, avg, count, etc), but this is impossible since MySQL simply chokes.
I should note that many efforts were put to optimize the current performance - all tables are indexed properly and queries are tuned, the hardware is top notch, the storage engine was configured and so on. However, still each query takes very long - to the point where "let's run it before we go home and hope for the best when we come to work tomorrow." Not good.
This has to be a solvable problem - many large companies perform very data and computational intensive mining, and handle it well (without writing their own storage engines, google). I'm willing to accept time penalty to get the job done, but on the order of hours, not days. My question is - what do people use to counter problems like this? I've heard of storage engines geared to this type of problem (greenplum, etc.), but I wanted to hear how this problem is typically approached. Our current data store is obviously relational and should probably remain such, but any thoughts or suggestions are welcome. Thanks.
I suggest PostgreSQL, which I've been working with quite successfully on tables with ~0.5B rows that required some complex join operations. Oracle should be good for that too, but I don't have much experience with it.
It should be noted that switching an RDBMS isn't a magic solution, if you want to scale to those sizes there's a LOT of hard work to be done in optimizing your queries, optimizing the database structure and indexes, fine tuning the database configuration, using the right hardware for your usage, replication, using materialized views (which are extremely powerful when used correctly. see here and here - its postgres specific, but applies to other RDBMSs too)... and at some point, you just have to throw more money on the problem.
edited fixed some weird typos (useless android auto correct...) and added some resources about materialized views
We have used MS SqlServer to run analytics on financial data with ten of millions of rows and more using complex JOIN and aggregation. Several things that we have done other than what you have mentioned are:
We chunk the calculation into a lot of temporary tables instead of using sub-query. These tables then we apply proper keys, indexing and so on via the code. Query with sub-query just fails for us
In the temporary tables, we often apply the clustered index that makes sense for us. Note that this temporary tables are filtered results so applying the index on the fly is not expensive compared to use the sub query in place of this temporary tables. Note I am speaking from our experience and might not apply to all cases
As we have done a lot of aggregation function as well, we did a lot indexing on the group columns
We do a lot of query run planning using SQL Query Analyzer that shows us the execution plan. Based on the plan, we revised the query, change the index
We provide hints for the SQL Server that we think could help the execution such as the choice of JOIN Algorithm to take (Hash, Merged or Nested)

How can I optimize my database?

I am creating a platform for some clients. Each client needs to have contacts and manage them in groups, categories (which depends of the group) and subcategories (which depends of the category).
The database is going to be very big, and Im afraid about the performance. I want to optimize the database; now, I have these options:
Manage only one database with multiple tables (as we manage now)
Create a database for each client (each database will have the same multiple tables as the option 1)
Manage multiple XML files (like option 2, each client will have a directory with an XML for contacts, another XML file for groups, another for categories, and so on)
Wich is the best option for performance and management of the data (CRUD, create, read, update, delete)??
Thanks!!
I think one database with multiple tables is the way to go, because duplicating the database and schema for each new client doesn't scale well. XML files sounds cool but so far I haven't seen an XML read/write engine which is as fast as most RDBMSes, so bin that one.
To make this work (lots of tables in one database) you should pay attention to indexing and optimizing the one database; indexes in particular will help you maintain speed as you scale up.
Use clustered indexing on the clienId in whichever table it might exist as a foreign key. This procedure will give you the best client-centric performance because you would (usually) be pulling a particular client's info in a page fetch.
For #2, I would suggest making that a premium service to your clients. If they want "priority hosting" on a separate server of "their own" then they pay extra. That will make the maintenance headache worthwhile.
Have you tried actually implementing 1 (which is the easiest)?
Did you profile the code?
What is the performance now?
use EXPLAIN to see how the queries are performing?
Do you use indexes (often correct indexes are enough to give excellent performance changes)?
Optimize when you hit a bottleneck (or when you set certain benchmarks for performance), not during design phase...
UPDATE: You mentioned "millions of entries". That's nothing for mysql (provided you use correct indexes on your tables). I have a table with about 40 million rows & although it's not lightning fast it gives me results in a couple of seconds. So there you go...
3 is not advisable. Search etc. is not what XML files do efficiently.
2 is a maintenance problem.
1 should be doable. "very big" means what? I have a database with a tabe with currently 1.5 billion entries - that is "big" not "very big". What do you define as very big?
As far as ongoing maintenance and support goes I think only option 1 makes sense for you.
Index all columns you need to but nothing more. Look at your code and see how tables are being JOINed and index the columns which will otherwise require a table scan.
Indicies will speed up the read operations but slow down your write operations as you need to update the indicies as well as the column. They also need more space in the DB.
As suggested above use EXPLAIN to see how your queries are executing and what can be optimized there.
Finally performance tuning only works well after you baseline your existing performance, make a change, then baseline performance again to see if it helped. If not roll back and try something else. But always start with a known level of performance, otherwise you might end up making multiple changes which in total slow things down. Good luck!

mysql tables structure - one very large table or separate tables?

I'm working on a project which is similar in nature to website visitor analysis.
It will be used by 100s of websites with average of 10,000s to 100,000s page views a day each so the data amount will be very large.
Should I use a single table with websiteid or a separate table for each website?
Making changes to a live service with 100s of websites with separate tables for each seems like a big problem. On the other hand performance and scalability are probably going to be a problem with such large data. Any suggestions, comments or advice is most welcome.
How about one table partitioned by website FK?
I would say use the design that most makes sense given your data - in this case one large table.
The records will all be the same type, with same columns, so from a database normalization standpoint they make sense to have them in the same table. An index makes selecting particular rows easy, especially when whole queries can be satisfied by data in a single index (which can often be the case).
Note that visitor analysis will necessarily involve a lot of operations where there is no easy way to optimise other than to operate on a large number of rows at once - for instance: counts, sums, and averages. It is typical for resource intensive statistics like this to be pre-calculated and stored, rather than fetched live. It's something you would want to think about.
If the data is uniform, go with one table. If you ever need to SELECT across all websites
having multiple tables is a pain. However if you write enough scripting you can do it with multiple tables.
You could use MySQL's MERGE storage engine to do SELECTs across the tables (but don't expect good performance, and watch out for the Windows hard limit on the number of open files - in Linux you may haveto use ulimit to raise the limit. There's no way to do it in Windows).
I have broken a huge table into many (hundreds) of tables and used MERGE to SELECT. I did this so the I could perform off-line creation and optimization of each of the small tables. (Eg OPTIMIZE or ALTER TABLE...ORDER BY). However the performance of SELECT with MERGE caused me to write my own custom storage engine. (Described http://blog.coldlogic.com/categories/coldstore/'>here)
Use the single data structure. Once you start encountering performance problems there are many solutions like you can partition your tables by website id also known as horizontal partitioning or you can also use replication. This all depends upon the the ratio of reads vs writes.
But for start keep things simple and use one table with proper indexing. You can also determine if you need transactions or not. You can also take advantage of various different mysql storage engines like MyIsam or NDB (in memory clustering) to boost up the performance. Also caching plays a very good role in offloading the load from the database. The data that is mostly read only and can be computed easily is usually put in the cache and the cache serves the request instead of going to the database and only the necessary queries go to the database.
Use one table unless you have performance problems with MySQL.
Nobody here cannot answer performance questions, you should just do performance tests yourself to understand, whether having one big table is sufficient.

What techniques are most effective for dealing with millions of records?

I once had a MySQL database table containing 25 million records, which made even a simple COUNT(*) query takes minute to execute. I ended up making partitions, separating them into a couple tables. What i'm asking is, is there any pattern or design techniques to handle this kind of problem (huge number of records)? Is MSSQL or Oracle better in handling lots of records?
P.S
the COUNT(*) problem stated above is just an example case, in reality the app does crud functionality and some aggregate query (for reporting), but nothing really complicated. It's just that it takes quite a while (minutes) to execute some these queries because of the table volume
See Why MySQL could be slow with large tables and COUNT(*) vs COUNT(col)
Make sure you have an index on the column you're counting. If your server has plenty of RAM, consider increasing MySQL's buffer size. Make sure your disks are configured correctly -- DMA enabled, not sharing a drive or cable with the swap partition, etc.
What you're asking with "SELECT COUNT(*)" is not easy.
In MySQL, the MyISAM non-transactional engine optimises this by keeping a record count, so SELECT COUNT(*) will be very quick.
However, if you're using a transactional engine, SELECT COUNT(*) is basically saying:
Exactly how many records exist in this table in my transaction ?
To do this, the engine needs to scan the entire table; it probably knows roughly how many records exist in the table already, but to get an exact answer for a particular transaction, it needs a scan. This isn't going to be fast using MySQL innodb, it's not going to be fast in Oracle, or anything else. The whole table MUST be read (excluding things stored separately by the engine, such as BLOBs)
Having the whole table in ram will make it a bit faster, but it's still not going to be fast.
If your application relies on frequent, accurate counts, you may want to make a summary table which is updated by a trigger or some other means.
If your application relies on frequent, less accurate counts, you could maintain summary data with a scheduled task (which may impact performance of other operations less).
Many performance issues around large tables relate to indexing problems, or lack of indexing all together. I'd definitely make sure you are familiar with indexing techniques and the specifics of the database you plan to use.
With regards to your slow count(*) on the huge table, i would assume you were using the InnoDB table type in MySQL. I have some tables with over 100 million records using MyISAM under MySQL and the count(*) is very quick.
With regards to MySQL in particular, there are even slight indexing differences between InnoDB and MyISAM tables which are the two most commonly used table types. It's worth understanding the pros and cons of each and how to use them.
What kind of access to the data do you need? I've used HBase (based on Google's BigTable) loaded with a vast amount of data (~30 million rows) as the backend for an application which could return results within a matter of seconds. However, it's not really appropriate if you need "real time" access - i.e. to power a website. Its column-oriented nature is also a fairly radical change if you're used to row-oriented DBMS.
Is count(*) on the whole table actually something you do a lot?
InnoDB will have to do a full table scan to count the rows, which is obviously a major performance issue if counting all of them is something you actually want to do. But that doesn't mean that other operations on the table will be slow.
With the right indexes, MySQL will be very fast at retrieving data from tables much bigger than that. The problem with indexes is that they can hurt insert speeds, particularly for large tables as insert performance drops dramatically once the space required for the index reaches a certain threshold - presumably the size it will keep in memory. But if you only need modest insert speeds, MySQL should do everything you need.
Any other database will have similar tradeoffs between retrieve speed and insert speed; they may or may not be better for your application. But I would look first at getting the indexes right, and maybe rewriting your queries, before you try other databases. For what it's worth, we picked MySQL originally because we found it performed best.
Note that MyISAM tables in MySQL store the total size of the table. They maintain this because it's useful to the optimiser in some cases, but a side effect is that count(*) on the whole table is really fast. That doesn't necessarily mean they're faster than InnoDB at anything else.
I answered a similar question in This Stackoverflow Posting in some detail, describing the merits of the architectures of both systems. To some extent it was done from a data warehousing point of view but many of the differences also matter on transactional systems.
However, 25 million rows is not a VLDB and if you are having performance problems you should look to indexing and tuning. You don't need to go to Oracle to support a 25 million row database - you've got about 3 orders of magnitude to go before you're truly in VLDB territory.
You are asking for a books worth of answer and I therefore propose you get a good book on databases. There are many.
To get you started, here are some database basics:
First, you need a great data model based not just on what data you need to store but on usage patterns. Good database performance starts with good schema design.
Second, place indicies on columns based upon expected lookup AND update needs as update performance is often overlooked.
Third, don't put functions in where clauses if at all possible.
Fourth, use an -ahem- RDBMS engine that is of quality design. I would respectfully submit that while it has improved greatly in the recent past, mysql does not qualify. (Apologies to those who wish to argue it has finally made the grade in recent times.) There is no longer any need to choose between high-price and quality; Postgres (aka PostgreSql) is available open-source and is truly fantastic - and has all the plug-ins available to meet your needs.
Finally, learn what you are asking a database engine to do - gain some insight into internals - so you can better judge what kinds of things are expensive and why.
I'm going to second #Mark Baker, and say that you need to build indices on your tables.
For other queries than the one you selected, you should also be aware that using constructs such as IN() is faster than a series of OR statements in the query. There are lots of little steps you can take to speed-up individual queries.
Indexing is key to performance with this number of records, but how you write the queries can make a big difference as well. Specific performance tuning methods vary by database, but in general, avoid returning more records or fields than you actually need, make sure all join fields are indexed (as well as common where clause fields), avoid cursors (although I think this is less true in Oracle than SQL Server I don't know about mySQL).
Hardware can also be a bottleneck especially if you are running things besides the database server on the same machine.
Performance tuning is a very technical subject and can't really be answered well in a format like this. I suggest you get a performance tuning book and read it. Here is a link to one for mySQL
http://www.amazon.com/High-Performance-MySQL-Optimization-Replication/dp/0596101716

MySQL: Advisable number of rows

Consider an indexed MySQL table with 7 columns, being constantly queried and written to. What is the advisable number of rows that this table should be allowed to contain before the performance would be improved by splitting the data off into other tables?
Whether or not you would get a performance gain by partitioning the data depends on the data and the queries you will run on it. You can store many millions of rows in a table and with good indexes and well-designed queries it will still be super-fast. Only consider partitioning if you are already confident that your indexes and queries are as good as they can be, as it can be more trouble than its worth.
There's no magic number, but there's a few things that affect performance in particular:
Index Cardinality: don't bother indexing a row that has 2 or 3 values (like an ENUM). On a large table, the query optimizer will ignore these.
There's a trade off between writes and indexes. The more indexes you have, the longer writes take. Don't just index every column. Analyze your queries and see which columns need to be indexed for your app.
Disk IO and a memory play an important role. If you can fit your whole table into memory, you take disk IO out of the equation (once the table is cached, anyway). My guess is that you'll see a big performance change when your table is too big to buffer in memory.
Consider partitioning your servers based on use. If your transactional system is reading/writing single rows, you can probably buy yourself some time by replicating the data to a read only server for aggregate reporting.
As you probably know, table performance changes based on the data size. Keep an eye on your table/queries. You'll know when it's time for a change.
MySQL 5 has partitioning built in and is very nice. What's nice is you can define how your table should be split up. For instance, if you query mostly based on a userid you can partition your tables based on userid, or if you're querying by dates do it by date. What's nice about this is that MySQL will know exactly which partition table to search through to find your values. The downside is if you're search on a field that isn't defining your partition its going to scan through each table, which could possibly decrease performance.
While after the fact you could point to the table size at which performance became a problem, I don't think you can predict it, and certainly not from the information given on a web site such as this!
Some questions you might usefully ask yourself:
Is performance currently acceptable?
How is performance measured - is
there a metric?
How do we recognise
unacceptable performance?
Do we
measure performance in any way that
might allow us to forecast a
problem?
Are all our queries using
an efficient index?
Have we simulated extreme loads and volumes on the system?
Using the MyISAM engine, you'll run into a 2GB hard limit on table size unless you change the default.
Don't ever apply an optimisation if you don't think it's needed. Ideally this should be determined by testing (as others have alluded).
Horizontal or vertical partitioning can improve performance but also complicate you application. Don't do it unless you're sure that you need it AND it will definitely help.
The 2G data MyISAM file size is only a default and can be changed at table creation time (or later by an ALTER, but it needs to rebuild the table). It doesn't apply to other engines (e.g. InnoDB).
Actually this is a good question for performance. Have you read Jay Pipes? There isn't a specific number of rows but there is a specific page size for reads and there can be good reasons for vertical partitioning.
Check out his kung fu presentation and have a look through his posts. I'm sure you'll find that he's written some useful advice on this.
Are you using MyISAM? Are you planning to store more than a couple of gigabytes? Watch out for MAX_ROWS and AVG_ROW_LENGTH.
Jeremy Zawodny has an excellent write-up on how to solve this problem.