Trying to append col.name on to a vector - function

I have several functions that I am trying to implement in R(studio). I will show the simplest one. I am trying to append names on to a vector for later use as a col.name.
# Initialize
headerA <- vector(mode="character",length=20)
headerA[1]="source";headerA[2]="matches"
# Function - add on new name
h <- function(df, compareA, compareB) {
new_header <- paste(compareA,"Vs",compareB,sep="_")
data.frame(df,new_header)
}
# Comparison 1:
compareA <-"AA"
compareB <-"BB"
headers <- (headerA, compareA, compareB)
But I am getting this error and it is very puzzling. I have googled it but the search is too vague/broad.
When run I get:
headers <- (headerA, compareA, compareB)
Error: unexpected ',' in "headers <- (headerA,"
The second error for the other function is similar...

It looks like you're missing a call to your function h and just have an open ( instead:
headers <- h(headerA, compareA, compareB)
Results in:
df new_header
1 source AA_Vs_BB
2 matches AA_Vs_BB
3 AA_Vs_BB
4 AA_Vs_BB
...

Related

r fetch data from mysql db loop

I successfully fetch data from my mysql db using r:
library(RMySQL)
mydb = dbConnect(MySQL(), user='user', password='pass', dbname='fib', host='myhost')
rs = dbSendQuery(mydb, 'SELECT distinct(DATE(date)) as date, open,close FROM stocksng WHERE symbol = "FIB7F";')
data <- fetch(rs, n=-1)
dbHasCompleted(rs)
so now I've an object a list:
> print (typeof(data))
[1] "list"
each elements is a tuple(?) like date(charts),open(long),close(long)
ok well now my problem: I want to get a vector of percentuale difference betwen close (x) and next day open (x+1) until the end BUT I can't access properly to the item!
Example: ((open)/close*100)-100)
I try:
for (item in data){
print (item[2])
}
and all possible combination like:
for (item in data){
print (item[][2])
}
but cannot access to right element :! anyone could help?
You have a bigger problem than this in your MySQL query, because you did not specify an ORDER BY clause. Consider using the following query:
SELECT DISTINCT
DATE(date) AS date,
open,
close
FROM stocksng
WHERE
symbol = "FIB7F"
ORDER BY
date
Here we order the result set by date, so that it makes sense to speak of the current and next open or close. Now with a proper query in place if you wanted to get the percentile difference between the current close and the next day open you could try:
require(dplyr)
(lead(open, 1) / close*100) - 100
Or using base R:
(open[2:(length(open)+1)] / close*100) - 100
naif version:
for (row in 1:nrow(data)){
date <- unname (data[row,"date"])
open <- unname (data[row+1,"open"])
close <- unname (data[row,"close"])
var <- abs((close/open*100)-100)
print (var)
}

Error while trying to parse json into R

I have recently started using R and have a task regarding parsing json in R to get a non-json format. For this, i am using the "fromJSON()" function. I have tried to parse json as a text file. It runs successfully when i do it with just a single row entry. But when I try it with multiple row entries, i get the following error:
fromJSON("D:/Eclairs/Printing/test3.txt")
Error in feed_push_parser(readBin(con, raw(), n), reset = TRUE) :
lexical error: invalid char in json text.
[{'CategoryType':'dining','City':
(right here) ------^
> fromJSON("D:/Eclairs/Printing/test3.txt")
Error in feed_push_parser(readBin(con, raw(), n), reset = TRUE) :
parse error: trailing garbage
"mumbai","Location":"all"}] [{"JourneyType":"Return","Origi
(right here) ------^
> fromJSON("D:/Eclairs/Printing/test3.txt")
Error in feed_push_parser(readBin(con, raw(), n), reset = TRUE) :
parse error: after array element, I expect ',' or ']'
:"mumbai","Location":"all"} {"JourneyType":"Return","Origin
(right here) ------^
The above errors are due to three different formats in which i tried to parse the json text, but the result was the same, only the location suggested by changed.
Please help me to identify the cause of this error or if there is a more efficient way o performing the task.
The original file that i have is an excel sheet with multiple columns and one of those columns consists of json text. The way i tried right now is by extracting just the json column and converting it to a tab separated text and then parsing it as:
fromJSON("D:/Eclairs/Printing/test3.txt")
Please also suggest if this can be done more efficiently. I need to map all the columns in the excel to the non-json text as well.
Example:
[{"CategoryType":"dining","City":"mumbai","Location":"all"}]
[{"CategoryType":"reserve-a-table","City":"pune","Location":"Kothrud,West Pune"}]
[{"Destination":"Mumbai","CheckInDate":"14-Oct-2016","CheckOutDate":"15-Oct-2016","Rooms":"1","NoOfPax":"3","NoOfAdult":"3","NoOfChildren":"0"}]
Consider reading in the text line by line with readLines(), iteratively saving the JSON dataframes to a growing list:
library(jsonlite)
con <- file("C:/Path/To/Jsons.txt", open="r")
jsonlist <- list()
while (length(line <- readLines(con, n=1, warn = FALSE)) > 0) {
jsonlist <- append(jsonlist, list(fromJSON(line)))
}
close(con)
jsonlist
# [[1]]
# CategoryType City Location
# 1 dining mumbai all
# [[2]]
# CategoryType City Location
# 1 reserve-a-table pune Kothrud,West Pune
# [[3]]
# Destination CheckInDate CheckOutDate Rooms NoOfPax NoOfAdult NoOfChildren
# 1 Mumbai 14-Oct-2016 15-Oct-2016 1 3 3 0

Iteratively read a fixed number of lines into R

I have a josn file I'm working with that contains multiple json objects in a single file. R is unable to read the file as a whole. But since each object occurs at regular intervals, I would like to iteratively read a fixed number of lines into R.
There are a number of SO questions on reading single lines into R but I have been unable to extend these solutions to a fixed number of lines. For my problem I need to read 16 lines into R at a time (eg 1-16, 17-32 etc)
I have tried using a loop but can't seem to get the syntax right:
## File
file <- "results.json"
## Create connection
con <- file(description=file, open="r")
## Loop over a file connection
for(i in 1:1000) {
tmp <- scan(file=con, nlines=16, quiet=TRUE)
data[i] <- fromJSON(tmp)
}
The file contains over 1000 objects of this form:
{
"object": [
[
"a",
0
],
[
"b",
2
],
[
"c",
2
]
]
}
With #tomtom inspiration I was able to find a solution.
## File
file <- "results.json"
## Loop over a file
for(i in 1:1000) {
tmp <- paste(scan(file=file, what="character", sep="\n", nlines=16, skip=(i-1)*16, quiet=TRUE),collapse=" ")
assign(x = paste("data", i, sep = "_"), value = fromJSON(tmp))
}
I couldn't create a connection as each time I tried the connection would close before the file had been completely read. So I got rid of that step.
I had to include the what="character" variable as scan() seems to expect a number by default.
I included sep="\n", paste() and collapse=" " to create a single string rather than the vector of characters that scan() creates by default.
Finally I just changed the final assignment operator to have a bit more control over the names of the output.
This might help:
EDITED to make it use a list and Reduce into one file
## Loop over a file connection
data <- NULL
for(i in 1:1000) {
tmp <- scan(file=con, nlines=16, skip=(i-1)*16, quiet=TRUE)
data[[i]] <- fromJSON(tmp)
}
df <- Reduce(function(x, y) {paste(x, y, collapse = " ")})
You would have to make sure that you don't reach further than the end of the file though ;-)

readHTMLTable in R throws warning within for loop

Hi I have 5 html sources, in which I want to run readHTMLTable on each and store the result. I can do this individually using:
readHTMLTable(iso.content[1],which=6)
readHTMLTable(iso.content[2],which=6)
.
.
however when putting this into a for loop I get:
library(XML)
> iso.table<-NULL
> for (i in 1:nrow(gene.iso)) {
+ iso.table[i]<-readHTMLTable(iso.content[i],which=6)
+ }
Warning messages:
1: In iso.table[i] <- readHTMLTable(iso.content[i], which = 6) :
number of items to replace is not a multiple of replacement length
2: In iso.table[i] <- readHTMLTable(iso.content[i], which = 6) :
number of items to replace is not a multiple of replacement length
3: In iso.table[i] <- readHTMLTable(iso.content[i], which = 6) :
number of items to replace is not a multiple of replacement length
4: In iso.table[i] <- readHTMLTable(iso.content[i], which = 6) :
number of items to replace is not a multiple of replacement length
5: In iso.table[i] <- readHTMLTable(iso.content[i], which = 6) :
number of items to replace is not a multiple of replacement length
So I can do this individually, but not using a for loop. It is not my aim to replace the current data with the next iteration, so I am unsure why the warning presents this.
any ideas?
The error has nothing to do with readHTMLTable really; it's all about iso.table. I'm not sure what type of object you wanted that to be, but if you want to store a bunch of data.frames, you're going to need a list. And when you're assigning objects to a list, you want to place them with [[ ]] not [ ]. Try
iso.table <- list()
for (i in 1:nrow(gene.iso)) {
iso.table[[i]] <- readHTMLTable(iso.content[i],which=6)
}

Wrapper to FOR loops with progress bar

I like to use a progress bar while running slow for loops. This could be done easily with several helpers, but I do like the tkProgressBar from tcltk package.
A small example:
pb <- tkProgressBar(title = "Working hard:", min = 0, max = length(urls), width = 300)
for (i in 1:300) {
# DO SOMETHING
Sys.sleep(0.5)
setTkProgressBar(pb, i, label=paste( round(i/length(urls)*100, 0), "% ready!"))
}
close(pb)
And I would like to set up a small function to store in my .Rprofile named to forp (as: for loop with progressbar), to call just like for but with auto added progress bar - but unfortunately have no idea how to implement and grab the expr part of the loop function. I had some experiments with do.call but without success :(
Imaginary working example (which acts like a for loop but creates a TkProgressBar and auto updates it in each iteration):
forp (i in 1:10) {
#do something
}
UPDATE: I think the core of the question is how to write a function which not only has parameters in the parentheses after the function (like: foo(bar)), but also can handle expr specified after the closing parentheses, like: foo(bar) expr.
BOUNTY OFFER: would go to any answer that could modify my suggested function to work like the syntax of basic for loops. E.g. instead of
> forp(1:1000, {
+ a<-i
+ })
> a
[1] 1000
it could be called like:
> forp(1:1000) {
+ a<-i
+ }
> a
[1] 1000
Just to clarify the task again: how could we grab the { expression } part of a function call? I am afraid that this is not possible, but will leave on the bounty for a few days for the pros :)
Given the other answers supplied, I suspect that it is impossible tough to do in exactly the way you specify.
However, I believe there is a way of getting very close, if you use the plyr package creatively. The trick is to use l_ply which takes a list as input and creates no output.
The only real differences between this solution and your specification is that in a for loop you can directly modify variables in the same environment. Using l_ply you need to send a function, so you will have to be more careful if you want to modify stuff in the parent environment.
Try the following:
library(plyr)
forp <- function(i, .fun){
l_ply(i, .fun, .progress="tk")
}
a <- 0
forp(1:100, function(i){
Sys.sleep(0.01)
a<<-a+i
})
print(a)
[1] 5050
This creates a progress bar and modifies the value of a in the global environment.
EDIT.
For the avoidance of doubt: The argument .fun will always be a function with a single argument, e.g. .fun=function(i){...}.
For example:
for(i in 1:10){expr} is equivalent to forp(1:10, function(i){expr})
In other words:
i is the looping parameter of the loop
.fun is a function with a single argument i
My solution is very similar to Andrie's except it uses base R, and I second his comments on the need to wrap what you want to do in a function and the subsequent need to use <<- to modify stuff in a higher environment.
Here's a function that does nothing, and does it slowly:
myfun <- function(x, text) {
Sys.sleep(0.2)
cat("running ",x, " with text of '", text, "'\n", sep="")
x
}
Here's my forp function. Note that regardless of what we're actually looping over, it instead loops over the sequence 1:n instead and get the right term of what we actually want within the loop. plyr does this automatically.
library(tcltk)
forp <- function(x, FUN, ...) {
n <- length(x)
pb <- tkProgressBar(title = "Working hard:", min = 0, max = n, width = 300)
out <- vector("list", n)
for (i in seq_len(n)) {
out[[i]] <- FUN(x[i], ...)
setTkProgressBar(pb, i, label=paste( round(i/n*100, 0), "% ready!"))
}
close(pb)
invisible(out)
}
And here's how both for and forp might be used, if all we want to do is call myfun:
x <- LETTERS[1:5]
for(xi in x) myfun(xi, "hi")
forp(x, myfun, text="hi")
And here's how they might be used if we want to modify something along the way.
out <- "result:"
for(xi in x) {
out <- paste(out, myfun(xi, "hi"))
}
out <- "result:"
forp(x, function(xi) {
out <<- paste(out, myfun(xi, "hi"))
})
For both versions the result is
> out
[1] "result: A B C D E"
EDIT: After seeing your (daroczig's) solution, I have another idea that might not be quite so unwieldy, which is to evaluate the expression in the parent frame. This makes it easier to allow for values other than i (now specified with the index argument), though as of right now I don't think it handles a function as the expression, though just to drop in instead a for loop that shouldn't matter.
forp2 <- function(index, x, expr) {
expr <- substitute(expr)
n <- length(x)
pb <- tkProgressBar(title = "Working hard:", min = 0, max = n, width = 300)
for (i in seq_len(n)) {
assign(index, x[i], envir=parent.frame())
eval(expr, envir=parent.frame())
setTkProgressBar(pb, i, label=paste( round(i/n*100, 0), "% ready!"))
}
close(pb)
}
The code to run my example from above would be
out <- "result:"
forp2("xi", LETTERS[1:5], {
out <- paste(out, myfun(xi, "hi"))
})
and the result is the same.
ANOTHER EDIT, based on the additional information in your bounty offer:
The syntax forX(1:1000) %doX$ { expression } is possible; that's what the foreach package does. I'm too lazy right now to build it off of your solution, but building off mine, it could look like this:
`%doX%` <- function(index, expr) {
x <- index[[1]]
index <- names(index)
expr <- substitute(expr)
n <- length(x)
pb <- tkProgressBar(title = "Working hard:", min = 0, max = n, width = 300)
for (i in seq_len(n)) {
assign(index, x[i], envir=parent.frame())
eval(expr, envir=parent.frame())
setTkProgressBar(pb, i, label=paste( round(i/n*100, 0), "% ready!"))
}
close(pb)
invisible(out)
}
forX <- function(...) {
a <- list(...)
if(length(a)!=1) {
stop("index must have only one element")
}
a
}
Then the use syntax is this, and the result is the same as above.
out <- "result:"
forX(xi=LETTERS[1:5]) %doX% {
out <- paste(out, myfun(xi, "hi"))
}
out
If you use the plyr family of commands instead of a for loop (generally a good idea if possible), you get as an added bonus a whole system of progress bars.
R.utils also has some progress bars built into it, and there exist instructions for using them in for loops.
R's syntax doesn't let you do exactly what you want, ie:
forp (i in 1:10) {
#do something
}
But what you can do is create some kind of iterator object and loop using while():
while(nextStep(m)){sleep.milli(20)}
Now you have the problem of what m is and how you make nextStep(m) have side effects on m in order to make it return FALSE at the end of your loop. I've written simple iterators that do this, as well as MCMC iterators that let you define and test for a burnin and thinning period within your loop.
Recently at the R User conference I saw someone define a 'do' function that then worked as an operator, something like:
do(100) %*% foo()
but I'm not sure that was the exact syntax and I'm not sure how to implement it or who it was put that up... Perhaps someone else can remember!
What you're hoping for, I think would be something that looks like
body(for)<- as.call(c(as.name('{'),expression([your_updatebar], body(for))))
And yep, the problem is that "for" is not a function, or at least not one whose "body" is accessible. You could, I suppose, create a "forp" function that takes as arguments 1) a string to be turned into the loop counter, e.g., " ( i in seq(1,101,5) )" , and 2) the body of your intended loop, e.g., y[i]<- foo[i]^2 ; points(foo[i],y[i], and then jump thru some getcallparse magic to execute the actual for loop.
Then , in pseudocode (not close to actual R code, but I think you see what should happen)
forp<-function(indexer,loopbody) {
pseudoparse( c("for (", indexer, ") {" ,loopbody,"}")
}
The problem is that the for-loop in R is treated special. A normal function is not allowed to look like that. Some small tweaks can make it loop pretty close though. And as #Aaron mentioned, the foreach package's %dopar% paradigm seems like the best fit. Here's my version of how it could work:
`%doprogress%` <- function(forExpr, bodyExpr) {
forExpr <- substitute(forExpr)
bodyExpr <- substitute(bodyExpr)
idxName <- names(forExpr)[[2]]
vals <- eval(forExpr[[2]])
e <- new.env(parent=parent.frame())
pb <- tkProgressBar(title = "Working hard:", min = 0, max = length(vals), width = 300)
for (i in seq_along(vals)) {
e[[idxName]] <- vals[[i]]
eval(bodyExpr, e)
setTkProgressBar(pb, i, label=paste( round(i/length(vals)*100, 0), "% ready!"))
}
}
# Example usage:
foreach(x = runif(10)) %doprogress% {
# do something
if (x < 0.5) cat("small\n") else cat("big")
}
As you can see, you have to type x = 1:10 instead of x in 1:10, and the infix operator %<whatever>% is needed to get hold of the looping construct and the loop body. I currently don't do any error checking (to avoid muddling the code). You should check the name of the function ("foreach"), the number of arguments to it (1) and that you actually get a valid loop variable ("x") and not an empty string.
I propose hereby two solutions that use the standard for syntax, both are using the great package progress from Gábor Csárdi and Rich FitzJohn
1) we can override temporarily or locally the for function to wrap around base::for and support progress bars.
2) we can define the unused for<-, and wrap around base::for using syntax pb -> for(it in seq) {exp} where pb is progress bar built with progress::progress_bar$new().
Both solutions behave as standard for calls :
The values changed at the previous iteration are available
on error the modified variables will have the value they had just before the error
I packaged my solution and will demo them below then will go through the code
Usage
#devtools::install_github("moodymudskipper/pbfor")
library(pbfor)
Using pb_for()
By default pb_for() will override the for function for one run only.
pb_for()
for (i in 1:10) {
# DO SOMETHING
Sys.sleep(0.5)
}
Using parameters from progress::progress_bar$new() :
pb_for(format = "Working hard: [:bar] :percent :elapsed",
callback = function(x) message("Were'd done!"))
for (i in 1:10) {
# DO SOMETHING
Sys.sleep(0.5)
}
Using for<-
The only restriction compared to a standard for call is that the first argument must exist and can't be NULL.
i <- NA
progress_bar$new() -> for (i in 1:10) {
# DO SOMETHING
Sys.sleep(0.5)
}
We can define a custom progress bar, and maybe define it conveniently in an initialisation script or in one's R profile.
pb <- progress_bar$new(format = "Working hard: [:bar] :percent :elapsed",
callback = function(x) ("Were'd done!"))
pb -> for (i in 1:10) {
# DO SOMETHING
Sys.sleep(0.5)
}
For nested progress bars we can use the following trick :
pbi <- progress_bar$new(format = "i: [:bar] :percent\n\n")
pbj <- progress_bar$new(format = "j: [:bar] :percent ")
i <- NA
j <- NA
pbi -> for (i in 1:10) {
pbj -> for (j in 1:10) {
# DO SOMETHING
Sys.sleep(0.1)
}
}
note that due to operator precedence the only way to call for<- and benefit from the syntax of for calls is to use the left to right arrow ´->´.
how they work
pb_for()
pb_for() creates a for function object in its parent environment, then the new for :
sets up a progress bar
modifies the loop content
adds a `*pb*`$tick() at the end of the loop content expression
feeds it back to base::`for` in a clean environment
assigns on exit all modified or created variables to the parent environment.
removes itself if once is TRUE (the default)
It's generally sensitive to override an operator, but it cleans after itself and won't affect the global environment if used in a function so I think it's safe enough to use.
for<-
This approach :
doesn't override for
allows the use of progress bar templates
has an arguably more intuitive api
It has a few drawbacks however:
its first argument must exist, which is the case for all assignment functions (fun<-).
it does some memory magic to find the name of its first argument as it's not easily done with assignment functions, this might have a performance cost, and I'm not 100% sure about the robustness
we need the package pryr
What it does :
find the name of the first argument, using a helper function
clone the progress bar input
edit it to account for the number of iterations of the loop (the length of the second argument of for<-
After this it's similar to what is described for pb_for() in the section above.
The code
pb_for()
pb_for <-
function(
# all args of progress::progress_bar$new() except `total` which needs to be
# infered from the 2nd argument of the `for` call, and `stream` which is
# deprecated
format = "[:bar] :percent",
width = options("width")[[1]] - 2,
complete = "=",
incomplete = "-",
current =">",
callback = invisible, # doc doesn't give default but this seems to work ok
clear = TRUE,
show_after = .2,
force = FALSE,
# The only arg not forwarded to progress::progress_bar$new()
# By default `for` will self detruct after being called
once = TRUE) {
# create the function that will replace `for`
f <- function(it, seq, expr){
# to avoid notes at CMD check
`*pb*` <- IT <- SEQ <- EXPR <- NULL
# forward all arguments to progress::progress_bar$new() and add
# a `total` argument computed from `seq` argument
pb <- progress::progress_bar$new(
format = format, width = width, complete = complete,
incomplete = incomplete, current = current,
callback = callback,
clear = clear, show_after = show_after, force = force,
total = length(seq))
# using on.exit allows us to self destruct `for` if relevant even if
# the call fails.
# It also allows us to send to the local environment the changed/created
# variables in their last state, even if the call fails (like standard for)
on.exit({
vars <- setdiff(ls(env), c("*pb*"))
list2env(mget(vars,envir = env), envir = parent.frame())
if(once) rm(`for`,envir = parent.frame())
})
# we build a regular `for` loop call with an updated loop code including
# progress bar.
# it is executed in a dedicated environment and the progress bar is given
# a name unlikely to conflict
env <- new.env(parent = parent.frame())
env$`*pb*` <- pb
eval(substitute(
env = list(IT = substitute(it), SEQ = substitute(seq), EXPR = substitute(expr)),
base::`for`(IT, SEQ,{
EXPR
`*pb*`$tick()
})), envir = env)
}
# override `for` in the parent frame
assign("for", value = f,envir = parent.frame())
}
for<- (and fetch_name())
`for<-` <-
function(it, seq, expr, value){
# to avoid notes at CMD check
`*pb*` <- IT <- SEQ <- EXPR <- NULL
# the symbol fed to `it` is unknown, R uses `*tmp*` for assignment functions
# so we go get it by inspecting the memory addresses
it_chr <- fetch_name(it)
it_sym <-as.symbol(it_chr)
# complete the progress bar with the `total` parameter
# we need to clone it because progress bars are environments and updated
# by reference
pb <- value$clone()
pb$.__enclos_env__$private$total <- length(seq)
# when the script ends, even with a bug, the values that have been changed
# are written to the parent frame
on.exit({
vars <- setdiff(ls(env), c("*pb*"))
list2env(mget(vars, env),envir = parent.frame())
})
# computations are operated in a separate environment so we don't pollute it
# with it, seq, expr, value, we need the progress bar so we name it `*pb*`
# unlikely to conflict by accident
env <- new.env(parent = parent.frame())
env$`*pb*` <- pb
eval(substitute(
env = list(IT = it_sym, SEQ = substitute(seq), EXPR = substitute(expr)),
base::`for`(IT, SEQ,{
EXPR
`*pb*`$tick()
})), envir = env)
# because of the `fun<-` syntax we need to return the modified first argument
invisible(get(it_chr,envir = env))
}
helpers:
fetch_name <- function(x,env = parent.frame(2)) {
all_addresses <- sapply(ls(env), address2, env)
all_addresses <- all_addresses[names(all_addresses) != "*tmp*"]
all_addresses_short <- gsub("(^|<)[0x]*(.*?)(>|$)","\\2",all_addresses)
x_address <- tracemem(x)
untracemem(x)
x_address_short <- tolower(gsub("(^|<)[0x]*(.*?)(>|$)","\\2",x_address))
ind <- match(x_address_short, all_addresses_short)
x_name <- names(all_addresses)[ind]
x_name
}
address2 <- getFromNamespace("address2", "pryr")
Thanks for everyone for your kind answers! As none of those fit my wacky needs, I started to steal some pieces of the given answers and made up a quite customized version:
forp <- function(iis, .fun) {
.fun <- paste(deparse(substitute(.fun)), collapse='\n')
.fun <- gsub(' <- ', ' <<- ', .fun, fixed=TRUE)
.fun <- paste(.fun, 'index.current <- 1 + index.current; setTkProgressBar(pb, index.current, label=paste( round(index.current/index.max*100, 0), "% ready!"))', sep='\n')
ifelse(is.numeric(iis), index.max <- max(iis), index.max <- length(iis))
index.current <- 1
pb <- tkProgressBar(title = "Working hard:", min = 0, max = index.max, width = 300)
for (i in iis) eval(parse(text=paste(.fun)))
close(pb)
}
This is quite lengthy for a simple function like this, but depends only on base (anf of course: tcltk) and has some nice features:
can be used on expressions, not just functions,
you do not have to use <<- in your expressions to update global environment, <- are replaced to <<- in the given expr. Well,this might be annoying for someone.
can be used with non-numeric indexes (see below). That is why the code become so long :)
Usage is similar to for except for you do not have to specify the i in part and you have to use i as index in the loop. Other drawback is that I did not find a way to grab the {...} part specified after a function, so this must be included in the parameters.
Example #1: Basic use
> forp(1:1000, {
+ a<-i
+ })
> a
[1] 1000
Try it to see the neat progress bar on your computer! :)
Example #2: Looping through some characters
> m <- 0
> forp (names(mtcars), {
+ m <- m + mean(mtcars[,i])
+ })
> m
[1] 435.69