I have the FFT of a sensor output data. Is there any way to get frequncy response function FRF from this. I dont have any input data. Plz help.
If you don't have any knowledge of the input data then you can't really calculate the frequency response. However if you happen to know that input signal is e.g. white noise, then you can at least get an approximation of the magnitude of the frequency response.
Taking the IFFT (basically the FFT) of the FFT output data will give get you back into the time domain.
Sorry for the above answer, which doesn't address the question. To be more helpful, IIRC, the FRF is the ratio of the FFT of the response (output) to the FFT of the
excitation (input). Since you only have the FFT of the output, I'd say that there is no way to obtain the FRF from this alone.
Related
All examples that I can find on the Internet just visualize the result array of the function computeSpectrum, but I am tasked with something else.
I generate a music note and I need by analyzing the result array to be able to say what note is playing. I figured out that I need to set the second parameter of the function call 'FFTMode' to true and then it returns sound frequencies. I thought that really it should return only one non-zero value which I could use to determine what note I generated using Math.sin function, but it is not the case.
Can somebody suggest a way how I can accomplish the task? Using the soundMixer.computeSpectrum is a requirement because I am going to analyze more complex sounds later.
FFT will transform your signal window into set of Nyquist sine waves so unless 440Hz is one of them you will obtain more than just one nonzero value! For a single sine wave you would obtain 2 frequencies due to aliasing. Here an example:
As you can see for exact Nyquist frequency the FFT response is single peak but for nearby frequencies there are more peaks.
Due to shape of the signal you can obtain continuous spectrum with peaks instead of discrete values.
Frequency of i-th sample is f(i)=i*samplerate/N where i={0,1,2,3,4,...(N/2)-1} is sample index (first one is DC offset so not frequency for 0) and N is the count of samples passed to FFT.
So in case you want to detect some harmonics (multiples of single fundamental frequency) then set the samplerate and N so samplerate/N is that fundamental frequency or divider of it. That way you would obtain just one peak for harmonics sinwaves. Easing up the computations.
I get how the DFT via correlation works, and use that as a basis for understanding the results of the FFT. If I have a discrete signal that was sampled at 44.1kHz, then that means if I were to take 1s of data, I would have 44,100 samples. In order to run the FFT on that, I would have to have an array of 44,100 and a DFT with N=44,100 in order to get the resolution necessary to detect a frequencies up to 22kHz, right? (Because the FFT can only correlate the input with sinusoidal components up to a frequency of N/2)
That's obviously a lot of data points and calculation time, and I have read that this is where the Short-time FT (STFT) comes in. If I then take the first 1024 samples (~23ms) and run the FFT on that, then take an overlapping 1024 samples, I can get the continuous frequency domain of the signal every 23ms. Then how do I interpret the output? If the output of the FFT on static data is N/2 data points with fs/(N/2) bandwidth, what is the bandwidth of the STFT's frequency output?
Here's an example that I ran in Mathematica:
100Hz sine wave at 44.1kHz sample rate:
Then I run the FFT on only the first 1024 points:
The frequency of interest is then at data point 3, which should somehow correspond to 100Hz. I think 44100/1024 = 43 is something like a scaling factor, which means that a signal with 1Hz in this little window will then correspond to a signal of 43Hz in the full data array. However, this would give me an output of 43Hz*3 = 129Hz. Is my logic correct but not my implementation?
As I have already stated in my earlier comments, the variable N affects the resolution achievable by the output frequency spectrum and not the range of frequencies you can detect.A larger N gives you a higher resolution at the expense of higher computation time and a lower N gives you lower computation time but can cause spectral leakage, which is the effect you have seen in your last figure.
As for your other question, well, theoretically the bandwidth of an FFT is infinite but we band-limit our result to the band of frequencies in the range [-fs/2 to fs/2] because all frequencies outside that band are susceptible to aliasing and are therefore of no use.Furthermore, if the input signal is real (which is true in most cases including ours) then the frequencies from [-fs/2 to 0] are just a reflection of the frequencies from [0 to fs/2] and so some FFT procedures just output the FFT spectrum from [0 to fs/2], which I think applies to your case.This means that the N/2 data points that you received as output represent the frequencies in the range [0 to fs/2] so that is the bandwidth you are working with in the case of the FFT and also in the case of the STFT (the STFT is just a series of FFT's, each FFT in a STFT will give you a spectrum with data points in this band).
I would also like to point out that the STFT will most likely not reduce your computation time if your input is a varying signal such as music because in that case you will need to take perform it several times over the duration of the song for it to be of any use, it will however enable you to understand the frequency characteristics of your song much better that you would do if you just performed one FFT.
To visualise the results of an FFT you use frequency (and/or phase) spectrum plots but in order to visualise the results of an STFT you will most probably need to create a spectrogram which is basically a graph can is made by just basically putting the individual FFT spectrums side by side.The process of creating a spectrogram can be seen in the figure below (Source: Dan Ellis - Introduction to Speech Processing).The spectrogram will show you how your signal's frequency characteristics change over time and how you interpret it will depend on what specific features you are looking to extract/detect from the audio.You might want to look at the spectrogram wikipedia page for more information.
I want to fit a curve to data obtained from an FFT. While working on this, I remembered that an FFT gives binned data, and therefore I wondered if I should treat this differently with curve-fitting.
If the bins are narrow compared to the structure, I think it should not be necessary to treat the data differently, but for me that is not the case.
I expect the right way to fit binned data is by minimizing not the difference between values of the bin and fit, but between bin area and the area beneath the fitted curve, for each bin, such that the energy in each bin matches the energy in the range of the bin as signified by the curve.
So my question is: am I thinking correctly about this? If not, how should I go about it?
Also, when looking around for information about this subject, I encountered the "Maximum log likelihood" for example, but did not find enough information about it to understand if and how it applied to my situation.
PS: I have no clue if this is the right site for this question, please let me know if there is a better place.
For an unwindowed FFT, the correct interpolation between bins is by using a Sinc (sin(x)/x) or periodic Sinc (Dirichlet) interpolation kernel. For an FFT of samples of a band-limited signal, thus will reconstruct the continuous spectrum.
A very simple and effective way of interpolating the spectrum (from an FFT) is to use zero-padding. It works both with and without windowing prior to the FFT.
Take your input vector of length N and extend it to length M*N, where M is an integer
Set all values beyond the original N values to zeros
Perform an FFT of length (N*M)
Calculate the magnitude of the ouput bins
What you get is the interpolated spectrum.
Best regards,
Jens
This can be done by using maximum log likelihood estimation. This is a method that finds the set of parameters that is most likely to have yielded the measured data - the technique originates in statistics.
I have finally found an understandable source for how to apply this to binned data. Sadly I cannot enter formulas here, so I refer to that source for a full explanation: slide 4 of this slide show.
EDIT:
For noisier signals this method did not seem to work very well. A method that was a bit more robust is a least squares fit, where the difference between the area is minimized, as suggested in the question.
I have not found any literature to defend this method, but it is similar to what happens in the maximum log likelihood estimation, and yields very similar results for noiseless test cases.
I am using the accelerate framework FFT functions to produce a spectrogram of a sound sample. This part works great. However, I want to (effectively) manipulate the spectrum directly (ie manipulate the real numbers), and then call the inverse again, how would I go about doing that? It looks like the INVERSE call expects an array of IMAGINARY numbers, but how can I produce that from my manipulated real numbers? I have tried making the realp array my reals, and the imagp part zero, but that doesn't seem to work.
The reason I ask this is because I wish to run an FFT on a voice audio sample, and then run the FFT again and then lifter the low part of the cepstrum (thus hopefully separating the vocal tract components from the pitch) and then run an inverse FFT again to produce a spectrogram showing the vocal tract (formant) information more clearly (ie, without the pitch information). However, I seem to be running into problems on the inverse FFT, into which I am passing in my real values (cepstrum) in the realp array and the imagp is zero. I think I am doing something wrong here and the results are unexpected.
You need to process the complex forward FFT results, rather than the real magnitudes, or else the shape of the IFFT result spectrum will be distorted. Don't consider them imaginary numbers, consider them to be part of a 2D vector containing the required angular phase information.
If your cepstrum lifter/filter alters only the real magnitudes, then you can try using the amount of change of the real magnitudes as scaling factors to alter your forward complex FFT result before doing a complex IFFT.
I am a programmer and not a good mathematician so FFT is like some black box to me, I would like t throw some data into some FFT library and get out a plottable AFR (amplitude-frequency response) data, like some software like Rightmark audio does:
http://www.ixbt.com/proaudio/behringer/3031a/fr-hf.png
Now I have a system which plays back a logarithmic swept sine (with short fade-in/fade-out to avoid sharp edges) and records the response from the audio system.
As far as I understand, I need to pad the input with zeros to 2^n, use audio samples as a real part of a complex numbers, set imaginary=0, and I'll get back from FFT the frequency bins array whith half length of input data.
But if I do not need as big frequency resolution as some seconds audio buffer give to me, then what is the right way to make, lets say, 1024 size FFT window, feed chunks of audio and get back 512 frequency points which take into account all the data I passed in? Or maybe it is not possible and I need to feed entire swept sine at once to get back all the AFR data I need?
Also is there any smoothing needed? I have seen that the raw output from FFT may be really noisy. What is the right way to avoid the noise as early as possible, so I see the noise only as it comes from the AFR itself and not from FFT calculations (like the image in the link I have given - it seems pretty smooth)?
I am a C++/C# programmer. I would be grateful for any examples which show how to process chunks of swept sine end get back AFR data. For now I have found only examples which process data in small chunks in realtime, and that is not what I need.
Window function should help you reducing the noise
All you need to do is multiply your input data by w(n) :