All examples that I can find on the Internet just visualize the result array of the function computeSpectrum, but I am tasked with something else.
I generate a music note and I need by analyzing the result array to be able to say what note is playing. I figured out that I need to set the second parameter of the function call 'FFTMode' to true and then it returns sound frequencies. I thought that really it should return only one non-zero value which I could use to determine what note I generated using Math.sin function, but it is not the case.
Can somebody suggest a way how I can accomplish the task? Using the soundMixer.computeSpectrum is a requirement because I am going to analyze more complex sounds later.
FFT will transform your signal window into set of Nyquist sine waves so unless 440Hz is one of them you will obtain more than just one nonzero value! For a single sine wave you would obtain 2 frequencies due to aliasing. Here an example:
As you can see for exact Nyquist frequency the FFT response is single peak but for nearby frequencies there are more peaks.
Due to shape of the signal you can obtain continuous spectrum with peaks instead of discrete values.
Frequency of i-th sample is f(i)=i*samplerate/N where i={0,1,2,3,4,...(N/2)-1} is sample index (first one is DC offset so not frequency for 0) and N is the count of samples passed to FFT.
So in case you want to detect some harmonics (multiples of single fundamental frequency) then set the samplerate and N so samplerate/N is that fundamental frequency or divider of it. That way you would obtain just one peak for harmonics sinwaves. Easing up the computations.
Related
I get how the DFT via correlation works, and use that as a basis for understanding the results of the FFT. If I have a discrete signal that was sampled at 44.1kHz, then that means if I were to take 1s of data, I would have 44,100 samples. In order to run the FFT on that, I would have to have an array of 44,100 and a DFT with N=44,100 in order to get the resolution necessary to detect a frequencies up to 22kHz, right? (Because the FFT can only correlate the input with sinusoidal components up to a frequency of N/2)
That's obviously a lot of data points and calculation time, and I have read that this is where the Short-time FT (STFT) comes in. If I then take the first 1024 samples (~23ms) and run the FFT on that, then take an overlapping 1024 samples, I can get the continuous frequency domain of the signal every 23ms. Then how do I interpret the output? If the output of the FFT on static data is N/2 data points with fs/(N/2) bandwidth, what is the bandwidth of the STFT's frequency output?
Here's an example that I ran in Mathematica:
100Hz sine wave at 44.1kHz sample rate:
Then I run the FFT on only the first 1024 points:
The frequency of interest is then at data point 3, which should somehow correspond to 100Hz. I think 44100/1024 = 43 is something like a scaling factor, which means that a signal with 1Hz in this little window will then correspond to a signal of 43Hz in the full data array. However, this would give me an output of 43Hz*3 = 129Hz. Is my logic correct but not my implementation?
As I have already stated in my earlier comments, the variable N affects the resolution achievable by the output frequency spectrum and not the range of frequencies you can detect.A larger N gives you a higher resolution at the expense of higher computation time and a lower N gives you lower computation time but can cause spectral leakage, which is the effect you have seen in your last figure.
As for your other question, well, theoretically the bandwidth of an FFT is infinite but we band-limit our result to the band of frequencies in the range [-fs/2 to fs/2] because all frequencies outside that band are susceptible to aliasing and are therefore of no use.Furthermore, if the input signal is real (which is true in most cases including ours) then the frequencies from [-fs/2 to 0] are just a reflection of the frequencies from [0 to fs/2] and so some FFT procedures just output the FFT spectrum from [0 to fs/2], which I think applies to your case.This means that the N/2 data points that you received as output represent the frequencies in the range [0 to fs/2] so that is the bandwidth you are working with in the case of the FFT and also in the case of the STFT (the STFT is just a series of FFT's, each FFT in a STFT will give you a spectrum with data points in this band).
I would also like to point out that the STFT will most likely not reduce your computation time if your input is a varying signal such as music because in that case you will need to take perform it several times over the duration of the song for it to be of any use, it will however enable you to understand the frequency characteristics of your song much better that you would do if you just performed one FFT.
To visualise the results of an FFT you use frequency (and/or phase) spectrum plots but in order to visualise the results of an STFT you will most probably need to create a spectrogram which is basically a graph can is made by just basically putting the individual FFT spectrums side by side.The process of creating a spectrogram can be seen in the figure below (Source: Dan Ellis - Introduction to Speech Processing).The spectrogram will show you how your signal's frequency characteristics change over time and how you interpret it will depend on what specific features you are looking to extract/detect from the audio.You might want to look at the spectrogram wikipedia page for more information.
I've been playing around with Web Audio some. I have a simple oscillator node playing at a frequency of context.sampleRate / analyzerNode.fftSize * 5 (107.666015625 in this case). When I call analyzer.getByteFrequencyData I would expect it to have a value in the 5th bin, and no where else. What I actually see is [0,0,0,240,255,255,255,240,0,0...]
Why am I getting values in multiple bins?
The webaudio AnalyserNode applies a Blackman window before computing the FFT. This windowing function will smear the single tone.
That has to do that your sequence is finite and therefore your signal is supposed to last for a finite amount of time. Surely you are calculating the FFT with a rectangular window, i.e. your signal is consider to last for the amount of generated samples only and that "discontinuity" (i.e. the fact that the signal has a finite number of samples) creates the spectral leakage. To minimise this effect, you could try several windows functions that when applied to your data prior the FFT calculation, reduces this effect.
It looks like you might be clipping somewhere in your computation by using a test signal too large for your data or arithmetic format. Try again using a floating point format.
The documentation for both of these methods are both very generic wherever I look. I would like to know what exactly I'm looking at with the returned arrays I'm getting from each method.
For getByteTimeDomainData, what time period is covered with each pass? I believe most oscopes cover a 32 millisecond span for each pass. Is that what is covered here as well? For the actual element values themselves, the range seems to be 0 - 255. Is this equivalent to -1 - +1 volts?
For getByteFrequencyData the frequencies covered is based on the sampling rate, so each index is an actual frequency, but what about the actual element values themselves? Is there a dB range that is equivalent to the values returned in the returned array?
getByteTimeDomainData (and the newer getFloatTimeDomainData) return an array of the size you requested - its frequencyBinCount, which is calculated as half of the requested fftSize. That array is, of course, at the current sampleRate exposed on the AudioContext, so if it's the default 2048 fftSize, frequencyBinCount will be 1024, and if your device is running at 44.1kHz, that will equate to around 23ms of data.
The byte values do range between 0-255, and yes, that maps to -1 to +1, so 128 is zero. (It's not volts, but full-range unitless values.)
If you use getFloatFrequencyData, the values returned are in dB; if you use the Byte version, the values are mapped based on minDecibels/maxDecibels (see the minDecibels/maxDecibels description).
Mozilla 's documentation describes the difference between getFloatTimeDomainData and getFloatFrequencyData, which I summarize below. Mozilla docs reference the Web Audio
experiment ; the voice-change-o-matic. The voice-change-o-matic illustrates the conceptual difference to me (it only works in my Firefox browser; it does not work in my Chrome browser).
TimeDomain/getFloatTimeDomainData
TimeDomain functions are over some span of time.
We often visualize TimeDomain data using oscilloscopes.
In other words:
we visualize TimeDomain data with a line chart,
where the x-axis (aka the "original domain") is time
and the y axis is a measure of a signal (aka the "amplitude").
Change the voice-change-o-matic "visualizer setting" to Sinewave to
see getFloatTimeDomainData(...)
Frequency/getFloatFrequencyData
Frequency functions (GetByteFrequencyData) are at a point in time; i.e. right now; "the current frequency data"
We sometimes see these in mp3 players/ "winamp bargraph style" music players (aka "equalizer" visualizations).
In other words:
we visualize Frequency data with a bar graph
where the x-axis (aka "domain") are frequencies or frequency bands
and the y-axis is the strength of each frequency band
Change the voice-change-o-matic "visualizer setting" to Frequency bars to see getFloatFrequencyData(...)
Fourier Transform (aka Fast Fourier Transform/FFT)
Another way to think about "time domain vs frequency" is shown the diagram below, from Fast Fourier Transform wikipedia
getFloatTimeDomainData gives you the chart on on the top (x-axis is Time)
getFloatFrequencyData gives you the chart on the bottom (x-axis is Frequency)
a Fast Fourier Transform (FFT) converts the Time Domain data into Frequency data, in other words, FFT converts the first chart to the second chart.
cwilso has it backwards.
the time data array is the longer one (fftSize), and the frequency data array is the shorter one (half that, frequencyBinCount).
fftSize of 2048 at the usual sample rate of 44.1kHz means each sample has 1/44100 duration, you have 2048 samples at hand, and thus are covering a duration of 2048/44100 seconds, which 46 milliseconds, not 23 milliseconds. The frequencyBinCount is indeed 1024, but that refers to the frequency domain (as the name suggests), not the time domain, and it the computation 1024/44100, in this context, is about as meaningful as adding your birth date to the fftSize.
A little math illustrating what's happening: Fourier transform is a 'vector space isomorphism', that is, a mapping going bijectively (i.e., reversible) between 2 vector spaces of the same dimension; the 'time domain' and the 'frequency domain.' The vector space dimension we have here (in both cases) is fftSize.
So where does the 'half' come from? The frequency domain coefficients 'count double'. Either because they 'actually are' complex numbers, or because you have the 'sin' and the 'cos' flavor. Or, because you have a 'magnitude' and a 'phase', which you'll understand if you know how complex numbers work. (Those are 3 ways to say the same in a different jargon, so to speak.)
I don't know why the API only gives us half of the relevant numbers when it comes to frequency - I can only guess. And my guess is that those are the 'magnitude' numbers, and the 'phase' numbers are thrown out. The reason that this is my guess is that in applications, magnitude is far more important than phase. Still, I'm quite surprised that the API throws out information, and I'd be glad if some expert who actually knows (and isn't guessing) can confirm that it's indeed the magnitude. Or - even better (I love to learn) - correct me.
I am using the accelerate framework FFT functions to produce a spectrogram of a sound sample. This part works great. However, I want to (effectively) manipulate the spectrum directly (ie manipulate the real numbers), and then call the inverse again, how would I go about doing that? It looks like the INVERSE call expects an array of IMAGINARY numbers, but how can I produce that from my manipulated real numbers? I have tried making the realp array my reals, and the imagp part zero, but that doesn't seem to work.
The reason I ask this is because I wish to run an FFT on a voice audio sample, and then run the FFT again and then lifter the low part of the cepstrum (thus hopefully separating the vocal tract components from the pitch) and then run an inverse FFT again to produce a spectrogram showing the vocal tract (formant) information more clearly (ie, without the pitch information). However, I seem to be running into problems on the inverse FFT, into which I am passing in my real values (cepstrum) in the realp array and the imagp is zero. I think I am doing something wrong here and the results are unexpected.
You need to process the complex forward FFT results, rather than the real magnitudes, or else the shape of the IFFT result spectrum will be distorted. Don't consider them imaginary numbers, consider them to be part of a 2D vector containing the required angular phase information.
If your cepstrum lifter/filter alters only the real magnitudes, then you can try using the amount of change of the real magnitudes as scaling factors to alter your forward complex FFT result before doing a complex IFFT.
How should stereo (2 channel) audio data be represented for FFT? Do you
A. Take the average of the two channels and assign it to the real component of a number and leave the imaginary component 0.
B. Assign one channel to the real component and the other channel to the imag component.
Is there a reason to do one or the other? I searched the web but could not find any definite answers on this.
I'm doing some simple spectrum analysis and, not knowing any better, used option A). This gave me an unexpected result, whereas option B) went as expected. Here are some more details:
I have a WAV file of a piano "middle-C". By definition, middle-C is 260Hz, so I would expect the peak frequency to be at 260Hz and smaller peaks at harmonics. I confirmed this by viewing the spectrum via an audio editing software (Sound Forge). But when I took the FFT myself, with option A), the peak was at 520Hz. With option B), the peak was at 260Hz.
Am I missing something? The explanation that I came up with so far is that representing stereo data using a real and imag component implies that the two channels are independent, which, I suppose they're not, and hence the mess-up.
I don't think you're taking the average correctly. :-)
C. Process each channel separately, assigning the amplitude to the real component and leaving the imaginary component as 0.
Option B does not make sense. Option A, which amounts to convert the signal to mono, is OK (if you are interested in a global spectrum).
Your problem (double freq) is surely related to some misunderstanding in the use of your FFT routines.
Once you take the FFT you need to get the Magnitude of the complex frequency spectrum. To get the magnitude you take the absolute of the complex spectrum |X(w)|. If you want to look at the power spectrum you square the magnitude spectrum, |X(w)|^2.
In terms of your frequency shift I think it has to do with you setting the imaginary parts to zero.
If you imagine the complex Frequency spectrum as a series of complex vectors or position vectors in a cartesian space. If you took one discrete frequency bin X(w), there would be one real component representing its direction in the real axis (x -direction), and one imaginary component in the in the imaginary axis (y - direction). There are four important values about this discrete frequency, 1. real value, 2. imaginary value, 3. Magnitude and, 4. phase. If you just take the real value and set imaginary to 0, you are setting Magnitude = real and phase = 0deg or 90deg. You have hence forth modified the resulting spectrum, and applied a bias to every frequency bin. Take a look at the wiki on Magnitude of a vector, also called the Euclidean norm of a vector to brush up on your understanding. Leonbloy was correct, but I hope this was more informative.
Think of the FFT as a way to get information from a single signal. What you are asking is what is the best way to display data from two signals. My answer would be to treat each independently, and display an FFT for each.
If you want a really fast streaming FFT you can read about an algorithm I wrote here: www.depthcharged.us/?p=176