I've had a hard time trying to find good examples of how to manage database schemas and data between development, test, and production servers.
Here's our setup. Each developer has a virtual machine running our app and the MySQL database. It is their personal sandbox to do whatever they want. Currently, developers will make a change to the SQL schema and do a dump of the database to a text file that they commit into SVN.
We're wanting to deploy a continuous integration development server that will always be running the latest committed code. If we do that now, it will reload the database from SVN for each build.
We have a test (virtual) server that runs "release candidates." Deploying to the test server is currently a very manual process, and usually involves me loading the latest SQL from SVN and tweaking it. Also, the data on the test server is inconsistent. You end up with whatever test data the last developer to commit had on his sandbox server.
Where everything breaks down is the deployment to production. Since we can't overwrite the live data with test data, this involves manually re-creating all the schema changes. If there were a large number of schema changes or conversion scripts to manipulate the data, this can get really hairy.
If the problem was just the schema, It'd be an easier problem, but there is "base" data in the database that is updated during development as well, such as meta-data in security and permissions tables.
This is the biggest barrier I see in moving toward continuous integration and one-step-builds. How do you solve it?
A follow-up question: how do you track database versions so you know which scripts to run to upgrade a given database instance? Is a version table like Lance mentions below the standard procedure?
Thanks for the reference to Tarantino. I'm not in a .NET environment, but I found their DataBaseChangeMangement wiki page to be very helpful. Especially this Powerpoint Presentation (.ppt)
I'm going to write a Python script that checks the names of *.sql scripts in a given directory against a table in the database and runs the ones that aren't there in order based on a integer that forms the first part of the filename. If it is a pretty simple solution, as I suspect it will be, then I'll post it here.
I've got a working script for this. It handles initializing the DB if it doesn't exist and running upgrade scripts as necessary. There are also switches for wiping an existing database and importing test data from a file. It's about 200 lines, so I won't post it (though I might put it on pastebin if there's interest).
There are a couple of good options. I wouldn't use the "restore a backup" strategy.
Script all your schema changes, and have your CI server run those scripts on the database. Have a version table to keep track of the current database version, and only execute the scripts if they are for a newer version.
Use a migration solution. These solutions vary by language, but for .NET I use Migrator.NET. This allows you to version your database and move up and down between versions. Your schema is specified in C# code.
Your developers need to write change scripts (schema and data change) for each bug/feature they work on, not just simply dump the entire database into source control. These scripts will upgrade the current production database to the new version in development.
Your build process can restore a copy of the production database into an appropriate environment and run all the scripts from source control on it, which will update the database to the current version. We do this on a daily basis to make sure all the scripts run correctly.
Have a look at how Ruby on Rails does this.
First there are so called migration files, that basically transform database schema and data from version N to version N+1 (or in case of downgrading from version N+1 to N). Database has table which tells current version.
Test databases are always wiped clean before unit-tests and populated with fixed data from files.
The book Refactoring Databases: Evolutionary Database Design might give you some ideas on how to manage the database. A short version is readable also at http://martinfowler.com/articles/evodb.html
In one PHP+MySQL project I've had the database revision number stored in the database, and when the program connects to the database, it will first check the revision. If the program requires a different revision, it will open a page for upgrading the database. Each upgrade is specified in PHP code, which will change the database schema and migrate all existing data.
You could also look at using a tool like SQL Compare to script the difference between various versions of a database, allowing you to quickly migrate between versions
Name your databases as follows - dev_<<db>> , tst_<<db>> , stg_<<db>> , prd_<<db>> (Obviously you never should hardcode db names
Thus you would be able to deploy even the different type of db's on same physical server ( I do not recommend that , but you may have to ... if resources are tight )
Ensure you would be able to move data between those automatically
Separate the db creation scripts from the population = It should be always possible to recreate the db from scratch and populate it ( from the old db version or external data source
do not use hardcode connection strings in the code ( even not in the config files ) - use in the config files connection string templates , which you do populate dynamically , each reconfiguration of the application_layer which does need recompile is BAD
do use database versioning and db objects versioning - if you can afford it use ready products , if not develop something on your own
track each DDL change and save it into some history table ( example here )
DAILY backups ! Test how fast you would be able to restore something lost from a backup (use automathic restore scripts
even your DEV database and the PROD have exactly the same creation script you will have problems with the data, so allow developers to create the exact copy of prod and play with it ( I know I will receive minuses for this one , but change in the mindset and the business process will cost you much less when shit hits the fan - so force the coders to subscript legally whatever it makes , but ensure this one
This is something that I'm constantly unsatisfied with - our solution to this problem that is. For several years we maintained a separate change script for each release. This script would contain the deltas from the last production release. With each release of the application, the version number would increment, giving something like the following:
dbChanges_1.sql
dbChanges_2.sql
...
dbChanges_n.sql
This worked well enough until we started maintaining two lines of development: Trunk/Mainline for new development, and a maintenance branch for bug fixes, short term enhancements, etc. Inevitably, the need arose to make changes to the schema in the branch. At this point, we already had dbChanges_n+1.sql in the Trunk, so we ended up going with a scheme like the following:
dbChanges_n.1.sql
dbChanges_n.2.sql
...
dbChanges_n.3.sql
Again, this worked well enough, until we one day we looked up and saw 42 delta scripts in the mainline and 10 in the branch. ARGH!
These days we simply maintain one delta script and let SVN version it - i.e. we overwrite the script with each release. And we shy away from making schema changes in branches.
So, I'm not satisfied with this either. I really like the concept of migrations from Rails. I've become quite fascinated with LiquiBase. It supports the concept of incremental database refactorings. It's worth a look and I'll be looking at it in detail soon. Anybody have experience with it? I'd be very curious to hear about your results.
We have a very similar setup to the OP.
Developers develop in VM's with private DB's.
[Developers will soon be committing into private branches]
Testing is run on different machines ( actually in in VM's hosted on a server)
[Will soon be run by Hudson CI server]
Test by loading the reference dump into the db.
Apply the developers schema patches
then apply the developers data patches
Then run unit and system tests.
Production is deployed to customers as installers.
What we do:
We take a schema dump of our sandbox DB.
Then a sql data dump.
We diff that to the previous baseline.
that pair of deltas is to upgrade n-1 to n.
we configure the dumps and deltas.
So to install version N CLEAN we run the dump into an empty db.
To patch, apply the intervening patches.
( Juha mentioned Rail's idea of having a table recording the current DB version is a good one and should make installing updates less fraught. )
Deltas and dumps have to be reviewed before beta test.
I can't see any way around this as I've seen developers insert test accounts into the DB for themselves.
I'm afraid I'm in agreement with other posters. Developers need to script their changes.
In many cases a simple ALTER TABLE won't work, you need to modify existing data too - developers need to thing about what migrations are required and make sure they're scripted correctly (of course you need to test this carefully at some point in the release cycle).
Moreover, if you have any sense, you'll get your developers to script rollbacks for their changes as well so they can be reverted if need be. This should be tested as well, to ensure that their rollback not only executes without error, but leaves the DB in the same state as it was in previously (this is not always possible or desirable, but is a good rule most of the time).
How you hook that into a CI server, I don't know. Perhaps your CI server needs to have a known build snapshot on, which it reverts to each night and then applies all the changes since then. That's probably best, otherwise a broken migration script will break not just that night's build, but all subsequent ones.
Check out the dbdeploy, there are Java and .net tools already available, you could follow their standards for the SQL file layouts and schema version table and write your python version.
We are using command-line mysql-diff: it outputs a difference between two database schemas (from live DB or script) as ALTER script. mysql-diff is executed at application start, and if schema changed, it reports to developer. So developers do not need to write ALTERs manually, schema updates happen semi-automatically.
If you are in the .NET environment then the solution is Tarantino (archived). It handles all of this (including which sql scripts to install) in a NANT build.
I've written a tool which (by hooking into Open DBDiff) compares database schemas, and will suggest migration scripts to you. If you make a change that deletes or modifies data, it will throw an error, but provide a suggestion for the script (e.g. when a column in missing in the new schema, it will check if the column has been renamed and create xx - generated script.sql.suggestion containing a rename statement).
http://code.google.com/p/migrationscriptgenerator/ SQL Server only I'm afraid :( It's also pretty alpha, but it is VERY low friction (particularly if you combine it with Tarantino or http://code.google.com/p/simplescriptrunner/)
The way I use it is to have a SQL scripts project in your .sln. You also have a db_next database locally which you make your changes to (using Management Studio or NHibernate Schema Export or LinqToSql CreateDatabase or something). Then you execute migrationscriptgenerator with the _dev and _next DBs, which creates. the SQL update scripts for migrating across.
For oracle database we use oracle-ddl2svn tools.
This tool automated next process
for every db scheme get scheme ddls
put it under version contol
changes between instances resolved manually
We are using Jira as our issue-tracker, and our team works with mercurial repositories. When a developer makes a database change that is associated with a jira issue, he adds the sql as a comment on the issue. The problem with this is - when it comes time to push these issues to our production site, I need to browse through each issue going live to see which ones have db updates in their comments. There has to be a better way!!
Our production mysql db is on a shared host that does not allow us direct access. Any sql updates I want to go live need to be emailed in a sql file to be imported.
Thanks.
What you describe is a common problem when developing against a database. The usual solution is "database versioning".
The basic idea is that different states of your schema (i.e. your tables, columns, stored procedures etc.) get different version numbers. Then scripts for migrating between schema versions are created and stored.
Be warned that you'll likely need to fundamentally change your workflow. I don't think having the SQL code for migration in JIRA is a sustainable strategy. SQL is code, and belongs into the code repository.
See e.g. this question for details and techniques: Database Schema Versioning Strategies
I'm working on logs for a customer service application. Another guy who is not a very experienced developer is working on other things, but we're both in the same database. He has some friends that work in Customer Service. I don't think he'd delete logs, but I want to be sure that if logs were deleted, we'd know about it.
Is it possible to get an email if a row is deleted, can I make a backup of that row in another database somewhere of the "deleted" data if it was deleted...... what are my options?
Or better yet.... what do you do?
Update
Part of the issue here is that there is no "programming" or "development" manager. The company has 25 employees - 2 of which are developers and we answer to the office manager who knows nothing about development.
For starters, don't allow developers access to the production environment. (Nobody should have direct access to the production environment except your highly trusted system administrator.)
Next, do all data changes via stored procs with a special account, and don't allow interactive access to the tables.
Finally, as part of the software, add an audit trail so you can see who did the deletion.
Or better yet.... what do you do?
Create second database user for him and do not grant DELETE privileges for log table?
I think hourly backups, and if necessary comparing the row counts, are the easiest and most reliable thing to do.
That's one reason why developers should not have access to production data. There are many more, privacy comes to mind, but to me the most important is still that you do not want anyone, no matter how trusted, able to "mess" with live data in any way.
So make sure developers work against a separate database, and ensure that the live production database does not have any users with priviliges they shouldn't have.
Make backups in another table with ENGINE=ARCHIVE? You need the privileges to run DDL statements in order to remove data from an ARCHIVE table.
I'm not even sure SQL Server stores this kind of information, but, is it possible to get the username of the person who last modified a particular stored procedure, function, table or view?
Nothing critical, just wondering. Thanks!
If you are using SQL Server 2008, you could use some new features that allow you to put triggers on DDL changes. You can then track, based on the authenticated user, who made the change.
I think these triggers are new to SQL 2008, but they may be available in 2005.
Having said this, ideally you should have your database schema under source control, using a tool like Visual Studio Database Professional. Then you'd have a complete history of who did what and when.
Randy
It doesn't store this information out of the box.
You can use SQL Trace and Event notification (see the corresponding MSDN Article) to log this kind of information by yourself.
I have no experience with these technologies though ...
Definitely put DDL triggers in place. Even if you don't end up using them, or if you end up putting a decent source control system in place, still have the DDL triggers in place so that you can be sure about what's going on.
Wondering if it is possible to have a version control of a MySQL database.
I realize this question has been asked before however the newest is almost a year ago, and at the rate things change...
The problem is coming that each developer has apache/MySQL/PHP on their own computers to which they sometimes edit the database. Its rather inconvenient if they have to send an email to all the other developers and then manually edit the test servers database.
How do you deal with this problem?
Thanks
This is not a MySQL-related solution in itself, but we've had a lot of success with a product called liquibase. (http://www.liquibase.org/)
It's a migration solution which covers many different database vendors, allowing all database changes to be coded in configuration files, all of which are kept in Subversion. Since all configuration is kept in XML files, it's easy to merge other people's changes into the mainline script and it plays well with tags and branches.
The database can be brought up to the current revision level by running the "update database" command. Most changes also have the ability to roll-back a database change, which can be helpful too. I would recommend following the practice of making sure you get current before running the migration, as this would likely be easiest.
Finally, when it comes to a production delivery, you can choose to have all the database changes output as a full SQL script so it can allow DBAs to run it and maintain a separation of duties.
So far, it's worked like a charm.
Well we use Rails which keeps all the change in the migration files. I know that a couple of PHP frameworks do the same thing - Symphony for instance. So when all the changes are merged in our repository ( we user mercurial) - we can see all the changes in migrations that need to or were applied on database in development. Than the person responsible for production rolls out code to production after a full backup is made. However if you don't use a PHP framework that takes care of this than, awied's suggestion sounds very interesting - I haven't heard of liquidbase before but I will definitely check it out.
There is a tool called iBatis, now called MyBatis that handles versions of databases perfectly.
It takes a little work to have all your changes in script instead of with a graphical tool, but, if you are familiar with coding, it's not a problem.
When you have multiple databases (like dev-test-prod), you just make 3 environment files and you can update one environment with only one command-line instruction.