Dependency Injection framework suitable for as3 games and regular rich media sites - actionscript-3

Doing a bit of research on dependency injection frameworks for AS3 to retain loose-coupling of classes and boost our re-usability of code. I've been looking heavily at RobotLegs. There's a whole lot I still don't understand about the framework but it seems ideal for our regular Rich Media apps but has anyone used this framework for AS3 games? if so is it a good framework for games or should I be looking for another framework? I've heard that the MVC pattern isn't ideal for game design but would love to be set straight on this :)
I'd love to hear from anyone who's used a dependency injection framework for games, how it faired for them!
Cheers,
Anton

I used RobotLegs for a game that required integration with a few different backend services. One service gave me a multi-player lobby area to allow players to challenge each other, one handled the head-to-head gameplay after a challenge, and one allowed players to access information from their social network accounts.
From the beginning, I planned the game's architecture as if I were building a Rich Internet Application. The game itself was an implementation of a popular turn-based board game. Thinking about how to run a local game vs a network game definitely helped me stay on track with the MVC framework approach to game development. There was a ton of code that could be reused, and the difference between interpreting a local player clicking with their mouse versus receiving a message through the network to indicate that a remote player did something similar helped me see what logic simply couldn't be tied to the view at all. I was able to use models, commands, and mediators very smoothly, and in the end, it made the game's code more maintainable and easier to understand when I delivered it to my client.
I think most games will have a basic model that tracks the "board" whether it be pieces in a grid or enemy ships and asteroids out in space. Once you're thinking of the model as a separate entity from the view, it should be easier to imagine how player interactions through mouse and keyboard could trigger commands from controller to make changes to the model and notify the view of those changes. For some simple games, that might end up being a lot more work. For others, such as those where long-term maintenance or multiple input methods are required, it can save some headaches.
Let's think about the different views in a game for a second. Views can include a title screen, a settings/options screen, a multi-player lobby, high scores/leaderboard screen, and the main game itself (which could consist of many smaller views!). Many of these views can have models, like the list of high scores, the various settings (which should be shared between the options screen and the game views), the list of players waiting for a game, and the current state of the game, etc. By the way, need a way to save the game so that a player can restart where they left off? It's way easier to do that when the data is in a model and not tied directly to the view.
I think that too many Flash developers look at games as hugely different beasts from Rich Internet Applications. An MVC framework can be appropriate for a game, especially for multi-player and for games that you intend to iterate on over a longer period of time to add new content and features. The biggest challenge is making yourself remember the fact that cute, little furry critters running across your screen is just a visualization of data that might easily be displayed in a different way using DataGrid or a chart... though it may not be as fun to play with them that way!

RobotLegs is brand-new, so you'll struggle to find many people who've used it in production. They finally moved from release candidates to a first stable version last week. However, it has been created by a whole bunch of extremely well-respected coders and if your project is across the middle-to-long term, you will see adoption of RobotLegs explode during the lifetime of your project. It is going to be what all the cool kids are using! :)
(I have no stake, other than having occasional communications with some of the authors via Twitter and across the blogosphere).
HTH

AS3 is not my business at the moment, but game-frameworks are ;)
So, yes and no, MVC pattern are not your first choice, because you do not create that much views, controllers and models.
You have something more like an interface, some generic "engine" processing the game mechanic, and some database tables.
I currently use some aspects of MVC but not the complete pattern - "just the benefits".
EDIT:
You "can not say that:" MVC is not designed to be used inside a game (engine), because the MVC pattern only describes a logic, and not something pre-defined, like "the code always has to contain $x and must begin with include($y)".
It is just a design pattern, which does not directly affect the quality of the code, rather the progress and how you go on with your game design.

Related

What design pattern is best for an RTS game in AS3?

I'm looking to get some good books on design patterns and I'm wondering what particular pattern you'd recommend for a Realtime Strategy Game (like Starcraft), MVC?.
I'd like to make a basic RTS in Flash at some point and I want to start studying the best pattern for this.
Cheers!
The problem with this kind of question is the answer is it completely depends on your design. RTS games are complicated even simple ones. They have many systems that have to work together and each of those systems has to be designed differently with a common goal.
But to talk about it a little here goes.
The AI system in an rts usually has a few different levels to it. There is the unit level AI which can be as simple as a switch based state machine all the way up to a full scale behavior tree (composite/decorators).
You also generally need some type of high level planning system for the strategic level AI. (the commander level and the AI player)
There are usually a few levels in between those also and some side things like resource managers etc.
You can also go with event based systems which tie in nicely with flash's event based model as well.
For the main game engine itself a basic state machine (anything from switch based to function based to class based) can easily be implemented to tie everything together and tie in the menu system with that.
For the individual players a Model-View-Controller is a very natural pattern to aim for because you want your AI players to be exposed to everything the human player has access to. Thus the only change would be the controller (the brain) without the need for a view obviously.
As I said this isn't something that can just be answered like the normal stackoverflow question it is completely dependent on the design and how you decide to implement it. (like most things) There are tons of resources out there about RTS game design and taking it all in is the only advice I can really give. Even simple RTS's are complex systems.
Good luck to you and I hope this post gives you an idea of how to think about it. (remember balance is everything in an RTS)
To support lots of units, you might employ Flyweight and Object Pool. Flyweight object can be stored entirely in a few bytes in a large ByteArray. To get usable object, read corresponding bytes, take empty object and fill it with data from those bytes. Object pool can hold those usable objects to prevent constant allocation/garbage collection. This way, you can hold thousands of units in ByteArray and manage them via dozen of pooled object shells.
It should be noted that this is more suitable to store tile properties that units, however — tile are more-or-less static, while units are created and destroyed on regular basis.
It would be good to be familiar with a number of design patterns and apply them to the architecture of your game where appropriate.
For example, you may employ an MVC architecture for your overall application, factory pattern for creating enemies, decorator pattern for shop items, etc. Point being, design patterns are simply methodologies for structuring your objects. How you define those object and how you decide how they fit together is non prescriptive.

Estimating Flash project hours

I'm trying to estimate the hours required to build a group of 5 simple children's games in Flash. They will include such things as having kids drag and drop healthy food items into a basket; choosing the healthy and unhealthy food items by marking them in some way; etc.
I have no experience building games in Flash, but I have programmed in Flex and Actionscript. How many hours do you estimate for this project?
While your ActionScript background will help, I find Flash to be a VERY different experience from Flex and that proficiency in one environment does not translate well.
Is there a compelling reason not to use Flex? I think you would likely be much more efficient.
That aside, the mechanics of a simple drag and drop game could be put together fairly quickly. There are some good examples of basic drag and drop around. It can be a little tricky to get the mouse coordinates right if it is your first time.
That aside, there are other hidden costs you need to remember. Connecting infrastructure for example. Are the games connected in some way? Is there a running score or persistence that might imply authentication? Is there a story?
Also, If your forte is programming, don't underestimate that challenges of obtaining or creating art and sound assets.
Before you can estimate the time you'll need to break down what the games do. In other words, you'll need to write up very clear and definite requirements. You may even need to write up specifications. Once you've analyzed what the software should do, the estimate will also take a while - one part for example is figuring out whether there's already software that does what you want.
In my opinion, the best way you can possibly estimate a programming project, especially one in a technology you don't understand, would be to apply the Use Case Points methodology. Basically you break the project up into use-cases (what the users are trying to do) and actors (the user types and the system itself) and then list a few team and environment factors (how big an issue is code re-use, how familiar are you with the lanaguage, etc.) Studies have shown that it's more accurate for inexperienced developers than estimating based on features alone.
A google search for "use case points estimate" reveals many useful links. This explanation of the methodology seems to do a good job explaining how it works, though I've not read the entire thing. This worksheet will help when you're ready to start listing points.

How is web programming different from back-end programming?

I have worked on single threaded business logic/back-end programming for most of my career. I now wish to learn web programming but would like to know how web programming is different from non-GUI programming (e.g. writing an API or a file processing application). I am not talking about the GUI design aspects (someone has already asked that question here) but more about programming complexity.
On the few occasions when I have worked on a web application, I felt that web applications are relatively more non-deterministic and unpredictable (for example, due to the event driven, multi-threaded model of web applications, there are several permutations and combinations of events and actions one needs to take care of) .
What would you say are some of the basic features of web programming that makes it different from non-GUI applications? What are the pitfalls/mistakes a back-end developer might commit while working on web applications?
EDIT
My definition of back-end programming means non-GUI applications like an API or a file processing batch application that parses a large data file, reads the records, does a lot of number crunching calculations on the data and spews out the results into another file or database. Anothe example could be a library of date and time utilities.
The biggest challenge with web programming is dealing with state. HTTP is a stateless protocol. This can make maintaining state more challenging than in a desktop application. Web applications tend to have a different life cycle due to this. Each web development platform deals with this somewhat differently, but they all need to deal with it in some way.
Web applications generally feel like single threaded applications, as you - the application developer - rarely create threads of your own. If anything, it's actually a lot easier, because the stateless nature of the web transactions means that you have to load the data for the page each time from the database. Therefore, you don't have to worry about concurrency, since 'whatever is there' is usually good enough.
The biggest problem with Web development is all of the background knowledge that you have to accumulate over time. How do you lay out web pages? How do you style things with CSS? How do you get parameters from the query string? How do you validate a field value in JavaScript? All of those things are actually really easy to learn, but there's just so many of them that it can be a real pain.
The biggest pitfalls I've witnessed Application developers make when moving into Web is not considering the costs of their code. Either they abuse MySQL to much too the point of bogging the RDBMS down, they write code that uses too much memory, or they make front end pages that are to big to fit in dialup/cellphones or low end broadband/dsl pipeline.
Sometimes it can't be avoid in writing a heavy duty page, but considerations can be made to attempt to cache as much as possible or when writing a page that will be hit a lot they will make no effort to profile and optimize queries before they go out the door.
Its not that these people are stupid, just a lack of experience and awareness that they need to play nice and write code that's somewhat lean.
Back-end programming is infinitely easier than web programming. (You have been warned!) Web programming is the easiest to show off to everybody.
Most web sites have a back end component as well. Typical structure will be something like:
UI - html/css/javascript
Controller - if using MVC
Business Logic/Services - this is backend
Database - this is also backend
So building web sites will still mean a lot of back end work. In regards to the UI, the main difference is that you will need to have a good eye for design and layout to do it well. The html/css technology is pretty simple in itself.
HTML was actually developed to deliver physics papers. You can still see it in some of the old meta tags. At any rate the difference is web programming is stateless and thick client development is not.
As you have adeptly indicated, its all driven by events. True javascript has mucked up web development a bit by creating the illusion of a stateful enviornment but in the end everything comes down to simple HTML.
Its never too late to start learning, I would say start making some static HTML pages and move your way up to an MVC Framework, I suggest Microsoft MVC Framework. Its pretty fantastic, there are others you could use like ASP.Net Webforms but you won't learn anything by dragging and dropping things onto a designer ;).
web & GUI applications interface with humans .. back-end applications interface with services and databases .. As such your specifications need to include significant consideration of your user's mental model - making things behave as people expect them to. And doing that - understanding how users think - is not always easy or logical. You may have elegant algorithmic solutions that simply fail to engage, because people don't always think logically. Many times, quite elegant UI's are extremely twisted coding-wise .. which is very contrary to system->system programming
Depending on problem-space, much of this can be more art than science.
One consideration (amongst many) with web programming is that users won't just be stupid (not that they all are, but you always have to factor that in), they will sometimes (assume always) be downright malicious and nasty, and will do everything in their power to destroy your application, your database, your weekends, your sanity...
Be as paranoid as a very small nun at a penguin shoot. Do not trust your users.
Another consideration is that Back End programming as per your definition is easier to test.
Once you begin web programming you're at the mercy of the various browsers' different interpretations of the same code. Plus the user, with inputs of mouse and keyboard, has a variety of ways to break what you produce.
Web programming isn't back-end programing. It shows stuff on the front end, the web.
Are you defining it otherwise?
EDIT
Web programming pulls you into presenting data consistently, visually, to everyone. Back end coding means constructing that data, in the same way for presentation, but not presenting it.
Based on your definition of "back end programming," your question applies not only to web applications, but to any GUI application.
It kind of depends what kind of GUI application we're talking about. For example:
Internal business applications tend to involve lots of business process workflow logic, record keeping, and interoperability between separate systems. No fancy alorithms or number crunching are needed. Your audience is limited, so performance is not a big deal, but cross-platform compatibility is important so these tend to be web applications. Your main concerns are making it easy to tie business sytems together, and keeping the API layered to ensure that the GUI code does not have to deal with any of the business logic code.
Public web sites (such as this one) tend to involve less of a formal architecture, and more of a mentality of "just get this cool feature to work so we can get more visitors." Again, no number crunching or algorithms unless performance is an issue. Performance is more of an issue for massively popular sites like Slashdot or Google, so if you anticipate rapid growth it pays to design for scalability in advance.
Public e-commerce web sites are kind of like both of the above: features and performance are important, but equally important is the structured architecture underneath it that ties all of the commerce business systems together (purchasing, supplier, shopping cart, payment gateways, etc.)
For the actual GUI portion, the complexity of the application kind of determines how complex the GUI code will be. For highly complex, nested GUIs where your requirements change often, it's easy to fall into the trap of putting too much GUI stuff into one page. Soon the page exceeds most people's complexity threshold, making the page very difficult to maintain. It pays to think in advance how you can separate different portions of the GUI into separate components, and then tie them together. If you're new to GUI programming, read some articles on the Model-View-Controller (MVC) pattern.
For simple web sites, where most pages are fairly static, this issue doesn't come up so much because each individual page is easy to maintain.
Most web programming is done in the style popular in the early seventies, before Dijkstra's 'goto considered harmful' was well-known.

What's the difference between game development and business development?

Like most developers, I'm a business developer, which in essence consists of slapping a UI onto some back-end data store. (We all know there's a lot more to it than that, but that's usually what it boils down to.)
I understand that game development is very different from business development, but I'm having a hard time explaining it to a friend of mine. I was hoping the SO community could help me out here.
To me, modern game developers deal a lot with manipulating 3-dimensional graphics. In gaming code (and I'm guessing here), you're assembling polygons (or something like that), rotating 'em, etc. This involves a different way of thinking from manipulating relational data (for instance). I don't know, really. I just know it's different.
EDIT:
I should stress that by "development" I mean "programming," not all of the aspects that go into creating a game or piece of business software. I'm sorry I didn't make that clear originally.
Thanks!
I'm in game development but came from business development long ago. Game development is very rigorous in mathematics if you work on the physics or graphics side. Even AI can need quite a bit of mathematics for the low-level stuff. The hardware usually takes care of a lot of the polygon manipulation math as far as drawing on the screen goes. There is also a lot of involvement with generating the in-game data with (often) many tools that are run in a pre-processing step, and that too can be math-intensive if you are generating visibility data.
In terms of programming domains, amongst other things, we deal with:
Graphics programming (including shader development)
Animation
Physics simulation
AI and gameplay
Audio
Networking (typically fairly low-level stuff)
Some of these involve pretty serious maths and algorithms knowledge. On top of all that, we face extremely tough speed constraints, and typically have to be very careful with memory usage too. We face constantly changing hardware, and since we're trying to push hardware to the limit, this can be pretty tough - you can't just abstract it away. Most game development is still quite low-level C++ work. We probably deal with databases less than most other programmers nowadays (although online games are changing this)!
Programmers are often the minority on modern game projects: it's all about content creation (animation, modelling, texturing, audio and design). This means many game programmers are dedicated to making the content creation process efficient, rather than working on the game code itself. This work may have more relaxed speed and memory constraints, although it does have to deal with massive data sets.
Making the game 'fun' is one of the hardest things to do - in business terminology, it "means extremely unstable requirements" as the designers constantly change their mind about how things should work, to chase down that elusive fun factor.
Finally, games are generally a ship-once, no chance to fix stuff kind of deal. This actually means there's very little code maintenance involved, so traditionally there may have been less attention paid to code quality issues. This is changing now with the growth in post-launch content addition, online gaming and the sheer size of modern projects.
Overall it's an incredibly exciting field to be in, the downside is that it's often less well paid (because it's a very tough business financially for developers, and because it's popular, there's always a fresh supply of people looking for jobs).
Just some random thoughts about what is different in game development. Note that there might be some sarcasm in it, though I tried to suppress the urge.
Unless you're a lucky employee of one of those new-style studios (like Eidos Montreal or Blizzard), there is always a deadline to fear that is much too short. In business programming, you mostly make the deadline up for yourself.
A business application serves some specific need. A game's intent is to entertain people. You can't really predict if a game will fail until it's out.
Performance is essential, in every aspect of the game. Writing code that is good to maintain is second priority. In business programming, good code that works is top priority.
For a business application, a shiny UI is a bonus. For a game, it is a must.
Debugging games is much harder, because there is always some hardware dependence which results in bugs that can only be reproduced on some machines, none of which is in your company. And a game sucks up much more performance than a typical business application.
You have people dedicated to creating the art, story, music, sound, background and design, none of which necessarily needs programming knowledge (scripting is a little different), i.e. you have a lot of content which is what the users (players) will see. Nobody cares about how good your code is, unless performance is bad or there are bugs. The others get the praise.
For larger games, you have programmers dedicated just to 3D graphics, networking, audio, tools, scripting, physics and so on. Most of them are highly specialized and each of them can lead the game into a disaster. You'll only need advanced math skills if you're the graphics or physics guy. Well, or AI.
Most games are fire-and-forget, apart from some bugfixes, unless it's one of the more successful games, which get an expansion pack or a sequel.
Security is an important issue for online games, since there are much more annoying people trying to to put people off than there are for business applications, many of which are for (more or less) internal uses at the customer.
You are expected to work much more than when writing business applications.
To land a job for an AAA title, you need to have worked on at least three shipped AAA titles (no, no typo here, ever read some job descriptions at Blizzard or LucasArts? :P)
But here come the good things:
You can pretend to work when you're playing games.
And finally, programming games is fun. Priceless.
Business development is generally much more forgiving.
The reason is basically this; usually, people ARE PAID to use business software. People PAY to use game software.
This may sound like it's not answering your question, but it really is. When my boss says "use microsoft word for that document", they're providing the software, and I'm obligated to use micosoft word. And so, when using it, when it decides to renumber all my chapter headings "just because" or a save to disk takes 30 seconds while it resolves OLE references (it's JUST ONE FREAKING EXCEL SPREADSHEET, for heaven's sake!), I just grit my teeth and remind myself I'm getting paid to do this.
Whereas, if I'm in a game, I'm expecting entertainment. I'm expecting the experience to work properly, and smoothly, and cleanly, with no major stutters or problems.
Again, getting down to why this is an issue for programming; those loops and structures in the game had better be DAMN good to make sure there is no major slowdown, no stuttering in the game engine, nothing that makes the consumer who just spent X amount of his hard-earned dollars say "this is a piece of crap" and walk away. With business software, you can get away with that sort of thing; in some ways, it's almost expected. Again, look at the performance of Microsoft Word; if it were a game, it would be laughed out of existence.
I know I sound like I'm picking on Microsoft Word, and I generally am, because I find it to be hideous, but the point is true for so many pieces of software. CAD software is another example. Same basic things going on as in games, but in general it's slow and hard to work with without a lot of training.
The difference comes down to polish, and the level of polish that's expected. Yes, there's generally more flexibility in business software than there is in games; but moreover and more importantly from a coding perspective, the code has GOT to work efficiently and cleanly in a game; business software is, generally, more forgiving of sloppy code.
In a business app, unoptimized and slow algorithms are generally accepted; and while they're never preferable, frequently the business decision gets made to add another feature instead of improving the performance. But in games, performance IS a feature, and one which is make-or-break.
One should have infinite loops, one shouldn't.
One should have infinite loops, one shouldn't. - Rich Bradshaw
Rich is right. Fundamentally, from a coding standpoint, a game loop creates a "frame" of action in which actions are taken based on the state of the game such as controller input, object collisions, etc. This loop repeats infinitely until some state of some game element or input tells it to stop or "quit." This approach keeps the CPU and graphics card pretty busy, hence the market for gamer machines with fast processors and even faster graphics cards.
Business applications do not have an active loop. Instead, they sit idle waiting for an event such as a click, a message from a web service client, an HTTP GET request, etc. Then they respond to the event.
Sure, gaming is generally more geometrically intensive than business applications, but that is not entirely true. Consider image editing, CAD and graphics tools. For many, these are business applications. But for the most part, a business application has to do with querying data, displaying that data, accepting user input, and modifying the data based on user input. In many cases, the business application does this across the network or even the Internet, but it's an apt nutshell.
The skillset and mindset of a business application developer and the game developer is often different. The game developer has a limited number of input constructs to consider in terms of creating a user experience with an unlimited choice of context or "world" if you will. The business developer is the opposite, with a limited set of potential contexts, usually the web page or the basic window, and an unlimited (or nearly so) set of input and data display combinations to create a user experience entirely different than the game developer sets out to achieve.
One big difference between business development and game development is the number of disciplines involved. Most business software is created by a team of developers, who all have the same basic skillset. In contrast, a game is created by a team of game designers, visual artists, 3d modelers, animators, musicians, and developers.
Good points about mathematics and integration of artists and other specialists in the team. In addition, I'd say that:
Game development, to some extend, will be more hardware dependent. In many cases, games are built simultaneously to several platforms and consoles (not to mention cellphones), with different architectures. That is abstracted up to a certain extent, but developers cannot completely avoid this fact.
Game development is often more performance sensitive, or at least the performance requirements are different. You're dealing with real-time experience, so a lot of time is spent optimizing those pesky fps.
In many cases, game development does not care as much about reuse and maintainability. The game engine will probably be reused, but the application code base will probably not live to see v2.0. In the last stretch of a project, there is a lot of quick and dirty debugging going on. If it looks fine to the end user, there's no added value in making an elegant fix two days before the release.
Let's start from the goal - the goal of game development is to create entertaining product. It should be accurate to the extend that it looks good and runs smoothly. The goal of a business software solution is to model a work process. It should be a tool which works fast enough. A stable product, which executes absolutely accurately and secure the tasks it should do.
Since we target different goals, we use different approaches to build a game and a business software. Let's move to the requirements. For a game, the requirements are determined by the game designer. For a software product the business defines the process and the requirements. For a game the requirements are not final - shall we have small cartoon figures or real human models - this does not matter for the game engine for example. But for a software product, the requirements should be strictly followed and cleared to the maximum possible detail before development.
From the different requirements come different software design and development approach. For a game the performance and gameplay are critical and the qualiity of the graphics and sounds (for example) could be reduced just to be compatible with weaker hardware. Also the physical model could be simplified just to run smoother and improve the gameplay. For the business software everything should be exact and cutting features means that your product will not be as functional as designed anymore.
For a game, the security is not important - there is no critical customer data which should be saved. For a business software a good security system should be supplied - starting from data encryption (while saving on data storage or transferring through network) moving through backup system and mentioning (but not last) the compatibility with previous versions.
I could continue with other aspects but I guess this is already too much for one post...
Business software (that isn't shrink-wrap software) can generally be much more poorly written but still considered a commercial success due to the bizarre disconnect between the quality of the product and saleability of the product. Game software, on the other hand, has to actually be good to survive the marketplace.
The bar for quality in specialized business software is generally much lower.
Business software has to be reliable, maintainable, consistent, not be too annoyingly slow, and can build on lots of already written stuff, such as databases, controls, forms etc.
A games programmer often starts with a blank sheet - hardware reference manuals, some documentation about the hardware and usually thin vendor libraries around some advanced hardware that's completely different to the last job.
From this they have to build what you see - and make most of it work within a 20ms time period, reliably, and often within a ridiculously short time period, facing changing requirements and often a very hard deadline, working untold numbers of hours for a comparative pittance.
That's not to mention often having to master some fairly complex mathematics and physics....
Performance is really the difference, from what I can tell.
Technologywise, games are usually Windows/C++ driven.
Game programming has more in common with scientific programming. You are modeling behavioral systems and anticipating results based upon a limited set of input.

How to get started with speech-to-text?

I'm really interested in speech-to-text algorithms, but I'm not sure where to start studying up on them. A bunch of searching around led me to this, but it's from 1996 and I'm fairly certain that there have been improvements since then.
Does anyone who has any experience with this sort of stuff have any recommendations for reading / source code to examine? Or just general advice on what I should be trying to learn about if I want to get into the world of writing speech recognition programs (sometimes it's hard to know what to search for if you don't have much knowledge about the domain).
Edit: I'd like to do something cross-platform, but for the moment I'd be targeting linux.
Edit 2: Thanks csmba for the well-thought out reply. At this point in time, I'm mainly interested in being able to create applications that allow automation, or execution of different commands through voice. So, a limited amount of recognizable commands being able to be strung together. An example would be a music player that took commands like "Play the album Hello Everything by Squarepusher", or an application launcher that allowed the user to create voice-shortcuts to launch specific apps.
I realize that it's a pretty giant problem, and that I have nowhere near the level of knowledge required right now to tackle implementing an entire recognition engine, although the techniques involved with doing so fascinate me, and it is something I'd like to work myself up to doing. In all likelihood, I'll probably end up picking up a book or two on the subject and studying up / playing with "simple" implementations in my free time.
This is a HUGE questions, I wouldn't know how to begin... So let me just try giving you the right "terms" so you can refine your quest:
First, understand that Speech Recognition is a diverse and complicated subject, and it has many different applications. People tend to map this domain to the first thing that comes to their head (usually, that would be computers understanding what you are saying like in IVR systems). So first lets distinguise the concept into the main categories:
Human-to-Machine: Applications that deal with understanding what a human is saying, but the human knows he is talking to a machine and the grammar is very limited. Examples are
Computer automation
Specialized: Pilots automating some controls for example (noise a huge problem)
IVR (Interactive Voice Response) systems like Google-411 or when you call the bank and the computer on the other side says "say 'service' to get customer service"
human-to-human (Spontaneous speech): This is a bigger, more complex problem. Here we can also break it down into different applciations:
Call Center: conversation between Agent-Customer, phone quality, compressed
Intelligence: radio/phone/live conversations between 2 or more individuals
Now, Speech-To-Text is not what you should be saying that you care about. What you care about is solving a problem. Different technologies are used to solve different problems. See an overview here of some of them. to summarize, other approaches are Phonetic transcription, LVCSR and direct based.
Also, are you interested in being the PHd behind the technology? you would need a Masters equivalent involving Signal processing and probably a PHd to be cutting edge. In which case, you will work for a company that develops the actual speech engine. Companies like Nuance and IBM are the big ones, but also Phillips and other startups exist.
On the other hand, if you want to be the one implementing applications, you will not be working on the engine, but working on building application that USE the engine. A good analogy I think is form the gaming industry:
Are you developing the graphic engine (like the Cry engine), or working on one of several hundred games, all use the same graphic engine?
Don't get me wrong, there is plenty to work on the quality of the search also outside the IBM/Nuance of the world. The engine is usually very open, and there are a lot of algorithmic tweaking to be done that can dramatically affect performance. Each business application has different constraints and cost/benefit function, so you can make experiments for many years building better voice recognition based applications.
one more thing: in general, you would also want to have good statistics background the lower in the stack you want to be.
At this point in time, I'm mainly interested in being able to create applications that allow automation
Good, we are converging here... Then you have no interest in "Speech-to-Text". That buzzwords takes you to the world of full transcription, a place you do not need to go to. You should be focusing on some of the more Human-to-Machine technologies like Voice XML and the ones used in IVR systems (Nuance is the biggest player there)
I would definitely recommend picking up a book or two if you are new to the field. I've got no experience in the field, so I can't make a recommendation. If you are still in college (or still have close ties), you should find out if any of your professors can make a recommendation.
The survey you linked is probably an excellent resource, too. I'm sure there have been advancements since 1996, but the basics are unlikely to have fundamentally changed. If the survey is well-written, then it would be well worth your time to read it.
For OS X check out this: OS X Speech Technologies
For Windows check out this: Microsoft Speech API
I have worked with IBMs ViaVoice product. It has a good ASR (automated speech recognition) engine, and a nice text-to-speech engine.
The websites not very good, but this is a link for the Embedded version http://www-01.ibm.com/software/voice/support/
It is platform agnostic though, and everything works through a MVC architecture using vxml a variant of xml for voice purposes.
What platform are you targeting ?. There is Microsoft Speech APIs that you can use if its for windows.
There is also the Speech Recognition Service for Android.