Fluent Interfaces - Method Chaining - language-agnostic

Method chaining is the only way I know to build fluent interfaces.
Here's an example in C#:
John john = new JohnBuilder()
.AddSmartCode("c#")
.WithfluentInterface("Please")
.ButHow("Dunno");
Assert.IsNotNull(john);
[Test]
public void Should_Assign_Due_Date_With_7DayTermsVia_Invoice_Builder()
{
DateTime now = DateTime.Now;
IInvoice invoice = new InvoiceBuilder()
.IssuedOn(now)
.WithInvoiceNumber(40)
.WithPaymentTerms(PaymentTerms.SevenDays)
.Generate();
Assert.IsTrue(invoice.DateDue == now.AddDays(7));
}
So how do others create fluent interfaces. How do you create it? What language/platform/technology is needed?

The core idea behind building a fluent interface is one of readability - someone reading the code should be able to understand what is being achieved without having to dig into the implementation to clarify details.
In modern OO languages such as C#, VB.NET and Java, method chaining is one way that this is achieved, but it's not the only technique - two others are factory classes and named parameters.
Note also that these techniques are not mutually exclusive - the goal is to maximize readabilty of the code, not purity of approach.
Method Chaining
The key insight behind method chaining is to never have a method that returns void, but to always return some object, or more often, some interface, that allows for further calls to be made.
You don't need to necessarily return the same object on which the method was called - that is, you don't always need to "return this;".
One useful design technique is to create an inner class - I always suffix these with "Expression" - that exposes the fluent API, allowing for configuration of another class.
This has two advantages - it keeps the fluent API in one place, isolated from the main functionality of the class, and (because it's an inner class) it can tinker with the innards of the main class in ways that other classes cannot.
You may want to use a series of interfaces, to control which methods are available to the developer at a given point in time.
Factory Classes
Sometimes you want to build up a series of related objects - examples include the NHibernate Criteria API, Rhino.Mocks expectation constraints and NUnit 2.4's new syntax.
In both of these cases, you have the actual objects you are storing, but to make them easier to create there are factory classes providing static methods to manufacture the instances you require.
For example, in NUnit 2.4 you can write:
Assert.That( result, Is.EqualTo(4));
The "Is" class is a static class full of factory methods that create constraints for evaluation by NUnit.
In fact, to allow for rounding errors and other imprecision of floating point numbers, you can specify a precision for the test:
Assert.That( result, Is.EqualTo(4.0).Within(0.01));
(Advance apologies - my syntax may be off.)
Named Parameters
In languages that support them (including Smalltalk, and C# 4.0) named parameters provide a way to include additional "syntax" in a method call, improving readability.
Consider a hypothetical Save() method that takes a file name, and permissions to apply to the file after saving:
myDocument.Save("sampleFile.txt", FilePermissions.ReadOnly);
with named parameters, this method could look like this:
myDocument.Save(file:"SampleFile.txt", permissions:FilePermissions.ReadOnly);
or, more fluently:
myDocument.Save(toFile:"SampleFile.txt", withPermissions:FilePermissions.ReadOnly);

You can create a fluent interface in any version of .NET or any other language that is Object Oriented. All you need to do is create an object whose methods always return the object itself.
For example in C#:
public class JohnBuilder
{
public JohnBuilder AddSmartCode(string s)
{
// do something
return this;
}
public JohnBuilder WithfluentInterface(string s)
{
// do something
return this;
}
public JohnBuilder ButHow(string s)
{
// do something
return this;
}
}
Usage:
John = new JohnBuilder()
.AddSmartCode("c#")
.WithfluentInterface("Please")
.ButHow("Dunno");

AFAIK, the term fluent interface does not specify a specific technology or framework, but rather a design pattern. Wikipedia does have an extensive example of fluent interfaces in C♯.
In a simple setter method, you do not return void but this. That way, you can chain all of the statements on that object which behave like that. Here is a quick example based on your original question:
public class JohnBuilder
{
private IList<string> languages = new List<string>();
private IList<string> fluentInterfaces = new List<string>();
private string butHow = string.Empty;
public JohnBuilder AddSmartCode(string language)
{
this.languages.Add(language);
return this;
}
public JohnBuilder WithFluentInterface(string fluentInterface)
{
this.fluentInterfaces.Add(fluentInterface);
return this;
}
public JohnBuilder ButHow(string butHow)
{
this.butHow = butHow;
return this;
}
}
public static class MyProgram
{
public static void Main(string[] args)
{
JohnBuilder johnBuilder = new JohnBuilder().AddSmartCode("c#").WithFluentInterface("Please").ButHow("Dunno");
}
}

Sometime ago I had the same doubts you are having now. I've done some research and now I'm writing a series of blog posts about techinics of designing a fluent interface.
Check it out at:
Guidelines to Fluent Interface design in C# part 1
I have a section there about Chaining X Nesting that can be interesting to you.
In the following posts I will talk about it in a deeper way.
Best regards,
André Vianna

Fluent interface is achieved in object oriented programming by always returning from your methods the same interface that contains the method. Consequently you can achieve this effect in java, javascript and your other favorite object oriented languages, regardless of version.
I have found this technique easiest to accomplish through the use of interfaces:
public interface IFoo
{
IFoo SetBar(string s);
IFoo DoStuff();
IFoo SetColor(Color c);
}
In this way, any concrete class that implements the interface, gets the fluent method chaining capabilities. FWIW.. I wrote the above code in C# 1.1
You will find this technique littered throughout the jQuery API

A couple of things come to mind that are possible in .Net 3.5/C# 3.0:
If an object doesn't implement a fluent interface, you could use Extension Methods to chain your calls.
You might be able to use the object initialization to simulate fluent, but this only works at instantiation time and would only work for single argument methods (where the property is only a setter). This seems hackish to me, but the there it is.
Personally, I don't see anything wrong with using function chaining if you are implementing a builder object. If the builder object has chaining methods, it keeps the object you are creating clean. Just a thought.

This is how I've built my so called fluent interfaces or my only forary into it
Tokenizer<Bid> tkn = new Tokenizer<Bid>();
tkn.Add(Token.LambdaToken<Bid>("<YourFullName>", b => Util.CurrentUser.FullName))
.Add(Token.LambdaToken<Bid>("<WalkthroughDate>",
b => b.WalkThroughDate.ToShortDateString()))
.Add(Token.LambdaToken<Bid>("<ContactFullName>", b => b.Contact.FullName))
.Cache("Bid")
.SetPattern(#"<\w+>");
My example required .net 3.5 but that's only cause of my lambda's. As Brad pointed out you can do this in any version of .net. Although I think lambda's make for more interesting possibilities such as this.
======
Some other good examples are nHibernate's Criteria API, there is also a fluent nhibernate extension for configuring nhibernate but I've never used it

Dynamic keyword in C# 4.0 will make it possible to write dynamic style builders. Take a look at following article about JSON object construction.

Related

How to replace PureMVC Standard with PureMVC MultiCore

I am working on a project, which uses PureMVC Standard. Now I need to add a new module SWF, which also uses Standard. I know the solution is to replace Standard MVC with MultiCore MVC, but there are two problems:
Standard's package structure is different from MultiCore's - do I have to correct this manually?
Under standard mvc framework, some code in the constructor of Mediator is allowed, while in MultiCore, this seems to be absolutely forbidden - so do I have to change so many constructors to get rid of this?
And finally: Other than replacing Standard with MultiCore, is there any better way to resolve the problem?
I am unaware of any other good methods for changing the package structure, other than global search-and-replace across a project. I have also not had problems doing this.
For Mediators, I have never had a problem with initializing simple variables (ints, Booleans, Arrays, etc) in the constructor, but anything else gets deferred to an onRegister (especially anything involving the stage in any way) and look something like:
public class MyMediator extends Mediator implements IMediator {
public static const NAME : String = "MyMediator";
// internal states
private var foo : int;
public function MyMediator (viewComponent : Object) {
super(NAME, viewComponent);
foo = 0;
trace("MyMediator()", main_mc);
}
override public function onRegister () : void {
main_mc.addEventListener(...);
}
protected function get main_mc () : Main {
return viewComponent as Main;
}
}
Having sparse contructors in AS3 is a good idea anyway, because constructor code is always interpreted and not compiled.
Out of habit now, I use multicore for all projects, even when I have a single core. This makes reusing mediators and proxies in new projects much easier.

Resolve parameters with a custom class

I have a Domain Specific Language, and I would like to register objects that can be instantiated inside.
For instance a class that can do httprequests.
[IoC("HttpRequest", typeof(DslScriptObject), IoCAttribute.IoCLifestyleType.Transient)]
internal class WebRequestDslObj : DslScriptObject
{
[DslNew]
public WebRequestDslObj() : this(null, null)
{}
[DslNew]
public WebRequestDslObj([DslParam("uri")]string uristring, [DslOptionalParam("contenttype")] string contenttype) : this(uristring, null)
{}
}
I then have a class that maps types from my dsl datatypes to c# datatypes (I have them as an IList if that makes any difference), and this works ok, if I do not use Castle to instantiate the object.
But as soon as I want to use IoC to autoregister the various types, then I dont know what to do about the constructors. I have tried to look at setting a CustomComponentActivator, but I got stuck at not being able to find any good example or documentation. Is that a viable path to take? (and will I be able to get around the funny special case for null parameters?)
Anyone have an example of where I can start?
So what are you trying to do with Windsor, because I'm not sure I see where you're going with it...
If you want to affect how component gets register in Windsor, for example rename parameters, you can write custom ComponentModel construction contributor to do it.

Castle Dynamic Proxy in Windsor Container

I've got a bit of a problem. I'm working in the Castle Windsor IOC Container. Now what i wanted to do is just mess about with some AOP principles and what i specifically want to do is based on a method name perform some logging. I have been looking at Interceptors and at the moment i am using the IInterceptor interface implemented as a class to perform this logging using aspects. The issue is if i want to perform the logging on a specific method then it gets messy as i need to put in some logic into my implemented aspect to check the method name etc...
I have read that you can do all of this using Dynamic Proxies and the IInterceptorSelector interface and the IProxyGenerationHook interface. I have seen a few examples of this done on the net but i am quite confused how this all fits into the Windsor container. I mean i am using the windsor container which in my code is actually a ref to the IWindsorContainer interface to create all my objects. All my configuration is done in code rather than XML.
Firstly does anyone know of a way to perform method specific AOP in the windsor container besides the way i am currently doing it.
Secondly how do i use the Dynamic Proxy in the windsor container ?
Below i have added the code where i am creating my proxy and registering my class with
the interceptors
ProxyGenerator _generator = new ProxyGenerator(new PersistentProxyBuilder());
IInterceptorSelector _selector = new CheckLoggingSelector();
var loggingAspect = new LoggingAspect();
var options = new ProxyGenerationOptions(new LoggingProxyGenerationHook())
{ Selector = _selector };
var proxy = _generator.CreateClassProxy(typeof(TestClass), options, loggingAspect);
TestClass testProxy = proxy as TestClass;
windsorContainer.Register(
Component.For<LoggingAspect>(),
Component.For<CheckLoggingAspect>(),
Component.For<ExceptionCatchAspect>(),
Component.For<ITestClass>()
.ImplementedBy<TestClass>()
.Named("ATestClass")
.Parameters(Parameter.ForKey("Name").Eq("Testing"))
.Proxy.MixIns(testProxy));
The Test Class is below:
public class TestClass : ITestClass
{
public TestClass()
{
}
public string Name
{
get;
set;
}
public void Checkin()
{
Name = "Checked In";
}
}
as for the interceptors they are very simple and just enter a method if the name starts with Check.
Now when i resolve my TestClass from the container i get an error.
{"This is a DynamicProxy2 error: Mixin type TestClassProxy implements IProxyTargetAccessor which is a DynamicProxy infrastructure interface and you should never implement it yourself. Are you trying to mix in an existing proxy?"}
I know i'm using the proxy in the wrong way but as i haven't seen any concrete example in how to use a proxy with the windsor container it's kind of confusing.
I mean if i want to use the LoggingProxyGenerationHook which just tell the interceptors to first for methods that start with the word "check" then is this the correct way to do it or am i completely on the wrong path. I just went down the proxy way as it seems very powerfull and i would like to understand how to use these proxies for future programming efforts.
By using .Interceptors() you already are using Dynamic Proxy. When component has specified interceptors Windsor will create proxy for it, and use these interceptors for it. You can also use method .SelectedWith and .Proxy property to set other options you already know from DynamicProxy.
I just added a website about Windsor AOP to documentation wiki. There's not much there yet, but I (and Mauricio ;) ) will put there all the information you need. Take a look, and let us know if everything is clear, and if something is missing.

How do you create your Factories?

So, coming upon the subject of Factories, I'm wondering how they are set up.
From where I stand, I can see 3 types of Factories:
All In One
A factory that basically contains all of the classes used in an application. It feels like it is just having a factory for the sake of having a factory, and doesn't really feel structured.
Example (Where ClassA, Class B, and ClassC have nothing in common except being in the same App):
class Factory
{
public static function buildClassA()
public static function buildClassB()
public static function buildClassC()
}
Code samples provided are in PHP. However, this question is language-agnostic.
Built-In Factory
The next one is mixing in static functions with the regular functions in order to make special creation patterns (see this question)
Example:
class ClassA
{
public static function buildClass()
public function __construct()
}
Factory On-the-Side
The last one I can think of is having a factory for individual classes, or individual sets of classes. This just seems to variable to be used in an uniform manner.
Example (Where ClassA, B, and C are related, and 1, 2, and 3 are related):
class FactoryAlpha
{
public static function buildClassA()
public static function buildClassB()
public static function buildClassC()
}
class FactoryNumeric
{
public static function buildClass1()
public static function buildClass2()
public static function buildClass3()
}
My question is: Are all of these bad ideas, are any of them bad ideas? Are there other ways of creating factories? Are any of these actually good ideas? What is a good/best way to create Factories.
The point of a factory seems to be to have the code that uses it not need to know which concrete class will be constructed (this should be handled by configuring the factory). That seems to rule out "All-in One" and "Factory-on-the-Side".
I like the approach that Java libraries often use: You have a static method that creates the Factory. The Factory has a getInstance method that creates the instance. This gives you two points of configuration (via system properties): The default FactoryImpl has a number of settings, such as the class it should produce, and if these configuration options are not enough, you can also swap out the FactoryImpl altogether.
As for "All-in One" vs "Factory-on-the-Side", a Factory should not produce unrelated classes I think. Again, it Java terms, every factory produces instances of a certain interface.
"All-in-One" sounds like something that should be replaced with Dependency Injection (where you have a container that produces all kinds of instances and injects them into the application).
If you are really interested in "Preferred technologies", I'd replace them all with Dependency Injection.
If that seems to heavy, just remember that you may not be seeing every use for your factory so don't "New" a hard-coded class in your factory. Instead, have a "Setter" that can specify what class needs to be injected.
This will come in handy later when you are unit testing and need to start injecting mock classes.
But as you make this more general, abstract and reusable, you'll end up back at DI. (Just don't say I didn't warn you)
There's really just two standard sorts of factories, at least according to GOF and the slew of patterns books that followed: The basic Factory, and the Abstract Factory.
A Factory generally returns a concrete instance that the caller refers to through an interface, like so:
// createWidget() here instantiates a BigWidget or SmallWidget or whatever the context calls for
IWidget widget = WidgetFactory.createWidget(someContextValue);
Using a factory with an interface in this way keeps the caller from being coupled into a specific type of the returned object. Following the venerable Single Responsibility Principle, a factory should do one thing, that is, return a concrete instance of the interface that was called for, and nothing more. A basic factory should only have the job of creating one type of object.
An Abstract Factory, on the other hand, can be thought of as a factory of factories, and might be closer to what you were thinking of as an "all in one" factory. An Abstract Factory is usually configured at start-up to return a group of related factories, for instance factories that might create a particular family of GUIs depending on a given context. This is an example of Dependency Inversion that has largely been replaced by using IOC containers like Spring.

Registering derived classes with reflection, good or evil?

As we all know, when we derive a class and use polymorphism, someone, somewhere needs to know what class to instanciate. We can use factories, a big switch statement, if-else-if, etc. I just learnt from Bill K this is called Dependency Injection.
My Question: Is it good practice to use reflection and attributes as the dependency injection mechanism? That way, the list gets populated dynamically as we add new types.
Here is an example. Please no comment about how loading images can be done other ways, we know.
Suppose we have the following IImageFileFormat interface:
public interface IImageFileFormat
{
string[] SupportedFormats { get; };
Image Load(string fileName);
void Save(Image image, string fileName);
}
Different classes will implement this interface:
[FileFormat]
public class BmpFileFormat : IImageFileFormat { ... }
[FileFormat]
public class JpegFileFormat : IImageFileFormat { ... }
When a file needs to be loaded or saved, a manager needs to iterate through all known loader and call the Load()/Save() from the appropriate instance depending on their SupportedExtensions.
class ImageLoader
{
public Image Load(string fileName)
{
return FindFormat(fileName).Load(fileName);
}
public void Save(Image image, string fileName)
{
FindFormat(fileName).Save(image, fileName);
}
IImageFileFormat FindFormat(string fileName)
{
string extension = Path.GetExtension(fileName);
return formats.First(f => f.SupportedExtensions.Contains(extension));
}
private List<IImageFileFormat> formats;
}
I guess the important point here is whether the list of available loader (formats) should be populated by hand or using reflection.
By hand:
public ImageLoader()
{
formats = new List<IImageFileFormat>();
formats.Add(new BmpFileFormat());
formats.Add(new JpegFileFormat());
}
By reflection:
public ImageLoader()
{
formats = new List<IImageFileFormat>();
foreach(Type type in Assembly.GetExecutingAssembly().GetTypes())
{
if(type.GetCustomAttributes(typeof(FileFormatAttribute), false).Length > 0)
{
formats.Add(Activator.CreateInstance(type))
}
}
}
I sometimes use the later and it never occured to me that it could be a very bad idea. Yes, adding new classes is easy, but the mechanic registering those same classes is harder to grasp and therefore maintain than a simple coded-by-hand list.
Please discuss.
My personal preference is neither - when there is a mapping of classes to some arbitrary string, a configuration file is the place to do it IMHO. This way, you never need to modify the code - especially if you use a dynamic loading mechanism to add new dynamic libraries.
In general, I always prefer some method that allows me to write code once as much as possible - both your methods require altering already-written/built/deployed code (since your reflection route makes no provision for adding file format loaders in new DLLs).
Edit by Coincoin:
Reflection approach could be effectively combined with configuration files to locate the implmentations to be injected.
The type could be declared explicitely in the config file using canonical names, similar to MSBuild <UsingTask>
The config could locate the assemblies, but then we have to inject all matching types, ala Microsoft Visual Studio Packages.
Any other mechanism to match a value or set of condition to the needed type.
My vote is that the reflection method is nicer. With that method, adding a new file format only modifies one part of the code - the place where you define the class to handle the file format. Without reflection, you'll have to remember to modify the other class, the ImageLoader, as well
Isn't this pretty much what the Dependency Injection pattern is all about?
If you can isolate the dependencies then the mechanics will almost certainly be reflection based, but it will be configuration file driven so the messiness of the reflection can be pretty well encapsulated and isolated.
I believe with DI you simply say I need an object of type <interface> with some other parameters, and the DI system returns an object to you that satisfies your conditions.
This goes together with IoC (Inversion of Control) where the object being supplied may need something else, so that other thing is automatically created and installed into your object (being created by DI) before it's returned to the user.
I know this borders on the "no comment about loading images other ways", but why not just flip your dependencies -- rather than have ImageLoader depend on ImageFileFormats, have each IImageFileFormat depend on an ImageLoader? You'll gain a few things out of this:
Each time you add a new IImageFileFormat, you won't need to make any changes anywhere else (and you won't have to use reflection, either)
If you take it one step further and abstract ImageLoader, you can mock it in Unit Tests, making testing the concrete implementations of each IImageFileFormat that much easier
In vb.net, if all the image loaders will be in the same assembly, one could use partial classes and events to achieve the desired effect (have a class whose purpose is to fire an event when the image loaders should register themselves; each file containing image loaders can have use a "partial class" to add another event handler to that class); C# doesn't have a direct equivalent to vb.net's WithEvents syntax, but I suspect partial classes are a limited mechanism for achieving the same thing.