What is an "interlocked pipeline" as in the MIPS acronym? - mips

I am going through a MIPS procesor architecture.
As per this tutorial it states : Microprocessor without Interlocked Pipeline Stages
http://en.wikipedia.org/wiki/MIPS_architecture
One major barrier to pipelining was that some instructions, like division, take longer to complete and the CPU
therefore has to wait before passing the next instruction into the pipeline.
One solution to this problem is to
use a series of interlocks that allows stages to indicate that they are busy, pausing the other stages upstream.
Hennessy's team viewed these interlocks as a major performance barrier since they had to communicate to all the
modules in the CPU which takes time, and appeared to limit the clock speed.A major aspect of the MIPS design
was to fit every sub-phase, including cache-access, of all instructions into one cycle, thereby removing any
needs for interlocking, and permitting a single cycle throughput.
This link says :---
https://www.cs.tcd.ie/Jeremy.Jones/vivio/dlx/dlxtutorial.htm
issue a "stall" instruction instead of a nop instruction upon a stall
What exactly is Interlock Pipeline disadvantage ?
Why routers use to prefer Processors with MIPS Architecture ?

A major aspect of the MIPS design was to fit every sub-phase, including cache-access, of all instructions into one cycle, thereby removing any needs for interlocking, and permitting a single cycle throughput.
But in later version of MIPS, http://cs.nyu.edu/courses/spring02/V22.0480-002/vliw.pdf slide 9, interlocking was reintroduced into architecure:
After all MIPS originally stood for something like
Microprocessor without interlocking pipeline stages
Because new implementations (with different memory latencies) would have required more than one slot and we don’t like correctness of code being dependent on the version of the implementation.
Because other instructions required interlocking anyway (e.g. floating-point)
Because it is not that painful to do interlocking
So, considering your questions:
What exactly is Interlock Pipeline disadvantage ?
Interlocking needs more complex hardware (control unit of CPU), which was not so easy to design and test in the era of hand-drawn transistors and CPUs of 100s thousands of transistors. They selected the goal of designing CPU core without Interlocking, but they failed. They were unable to produce compatible series of commercial chips without Interlocking.
Why routers use to prefer Processors with MIPS Architecture ?
Historically they were popular in first network devices and were used in next devices possibly due to inertia and investments in MIPS-based devices (both from the network device makers and from MIPS chip makers).
Check this book "See MIPS Run" By Dominic Sweetman, pages 15,16,22
http://books.google.com/books?id=kk8G2gK4Tw8C&pg=PR15
There were several easy accessible MIPS chips in the middle of 1990s, R4600, RM5200 and RM7000. The R4600 from 1993 was used by Cisco, next models had 64-bit bus and large on-chip L2 cache. They had enough performance to drive routers of the time.
In 2010s, I think, there are routers on ARM (there is a lot of SoCs with network and ARM now). This is because ARM is most widely licensed architecture (in terms of licensed core count, 78% in 2011); second architecture is ARC with 10% (check the Intel vPro sticker on your PC or laptop - if you has sticker, you has ARC core in your chipset; they are also used in many SSD controllers). MIPS is only third in this rating with only 6% of 10 billion cores total in market.

Related

Separate instruction and data memory

I am currently in a Computer Architecture class and this is the one thing majorly stumping me. I asked my professor why we have separate instruction and data memory (consider the single-cycle MIPS data path I'm attaching).
My thoughts:
add extra ports (not an issue of FU reuse, similar to register file implementation but with a port for instructions)
consolidate so that memory could be unified and not go unused
His:
agreed with me on last point
ports are quadratic negative increase in perf
separate allows more leeway in placement on chip
single-access memory is faster
Could anyone please elaborate on any of these points in more depth, or add anything of their own? I'm still not fully clear on this.
Yes, multi-ported DRAM is an option, but much more expensive, probably more than twice as expensive per byte. (And lower capacity per die area, so available sizes will be smaller).
In practice real CPUs just have split L1d/L1i caches, and unified L2 cache and memory, assuming it's ultimately a von Neumann type of architecture.
We call this "modified Harvard" - the performance advantages of Harvard allowing parallel code-fetch and load/store, except for contention for access to the unified cache or memory. But it's rare to have lots of code cache misses at the same time as data misses, because if you're stalling on code fetch then you'll have bubbles in the pipeline anyway. (Out-of-order exec could hide that better than a single single-cycle design, of course!)
It needs extra sync / pipeline flushing when we want to run machine code that we recently generated / stored, e.g. a JIT compiler, but other than that it has all the advantages of unified memory and the CPU-pipeline advantages of the Harvard split. (You need extra synchronization anyway to run recently-stored code on an ISA that allows deeply pipelined and out-of-order exec implementations, and which fetch code far ahead into buffers in the pipeline to give more room to absorb bubbles).
What does a 'Split' cache means. And how is it useful(if it is)?
L1 caches usually have split design, but L2, L3 caches have unified design, why?
The first pipelined CPUs had small caches or in the case of MIPS R2000 even off-chip caches with only the controllers on-chip. But yes, MIPS R2000 had split I and D cache. Because you don't want code-fetch to conflict with the MEM stage of load or store instructions; that would introduce a structural hazard that would interfere with running 1 instruction per cycle when you don't have cache misses.
In a single-cycle design I guess your cycle would normally be long enough to access memory twice because you aren't overlapping code-fetch and load/store, so you might not even need multi-ported memory?
L1 data caches are already multi-ported on modern high-performance CPUs, allowing them to commit a store from the store buffer in the same cycle as doing 1 or 2 loads on load execution units.
Having even more ports to also allow code-fetch from it would be even more expensive in terms of power, vs. two slightly smaller caches.
If you think of the Instruction Memory and Data Memory as caches, as in being backed by a unified main memory, then you have the traditional Modified Harvard Architecture, which has some of the advantages of both the Von Neumann and the Harvard Architecture together.
One point you didn't seem to raise is that separation of the two memories (caches) allows for simultaneous access, so an instruction can be read while a data memory is read or written in the same cycle.  This would be more difficult with a unified cache/memory.  This advantage applies to single cycle and pipelined processors since in both designs there is overlap between instruction fetch (IF stage in pipelined) and memory operations (MEM stage in pipelined).
Further, as the Instruction Memory is read-only it has less circuitry.  In the case of being caches, the IM has no dirty bits, no write back, etc..  Further, the IM and DM can have different associativity.
In the case of not being caches, it is not clear how the computer system loads the instruction memory, perhaps it is some fast ROM or is loaded by an external device from ROM into IM.  A number of embedded systems have Instruction Tightly Integrated Memory (and/or Data memory ITIM/DTIM) that then do not act as caches and are not necessarily backed by main memory, instead serving as the primary memories.

Does nvidia gpu work less efficiently when it is the only gpu in PC?

I want to assemble a new computer mainly for CUDA applications. When it comes to CPU I have to choose between AMD and Intel.
Most of the AMD's processors don't have integrated gpu while Intel's processors do.
My question is:
If the nvidia gpu would be the only graphic processing unit in the whole PC (without integrated one),
would its efficiency for CUDA programs be worse as it has to produce some graphics on a desktop (while using for example Matlab)?
The anwer is yes, efficiency would be slightly lower due to the GPU doing display tasks, like moving the cursor around or scrolling a display in a .pdf browser.
however if you are aiming for a reasonably mid-to-high-end GPU, the loss of efficiency is marginal. If you have enough money, you will buy dedicated GPU, but if not, then just don't bother. It might be like 1% or less.
A bigger problem is that the display takes up RAM, that (a) becomes unavailable to CUDA applications and (b) the CUDA manual states that the display driver is allowed to dis-own the CUDA application from it's memory at any time without warning (!).
If you ask me if that does really happen (display driver taking over the CUDA app memory), then yes, I have experienced it, with the prime example being when you change the resolution of your display.
So definetely don't do any banking with GPUs or you might see your accounts being randomly infused with millions :-)
That's why 'proffesional' CUDA cards (the tesla variety) have no display outputs - just in case.

Does watching HD videos slow down my program using the CUDA CPU? [duplicate]

I'm trying to figure out if I can use OpenACC in place of normal CPU serial execution calls. Usually my programming is all about 3D programming, or uses the GPU normally in some way. I.E. Image processing, or some other type of rendering that requires the use of shaders. I'm trying to figure out if this Library would benefit me or not.
The reason I ask this is because if I'm rendering 3D Graphics (as fast as possible) would it slow down that process in away? Or is it able to maintain it's (in theory) "high frame rates" or not.
If so, what's the trade off, and how much? I'm not willing to loose 3D Graphics (display) performance to enhance operations that can be done on the CPU serially.
Edit:
This is a C++ context.
On the AMD and NVIDIA GPUs that I am familiar with, OpenACC programs will make use of compute resources that would also be used to some degree by shader programs. There are many other pieces of graphics hardware in a GPU that are not shared between compute and graphics, but there are some shared resources. Likewise, the GPU may be connected to the system by PCIE, and so this can also present a shared resource or contention point (however it's the rare compute or graphics program that would even come close to using up the bandwidth of a modern Gen3 x16 PCIE connection.)
So if you were using both graphics (or compute) shaders, as well as OpenACC acceleration, there would be contention for resources, to some degree. The level of contention, or the trade off, is not something that I can generalize about. It will depend very much on the specifics of your program, and the extent and the detail sequencing of the compute functions and the graphics functions.
GPU designers have these types of use-cases in mind, and so GPUs are generally pretty good at rapid context switching between the various tasks that may compete for resources.

MIPS Architecture : NOP (No-Operation) Vs Data Forwarding in Hazard Prevention

I learnt in computer architecture course that, data hazard can be prevented by using several arbitrary, independent nop instructions in between two mutually dependent instructions. This can be done at assembly level in compiler design.
The alternative way to avoid data hazard is to use data forwarding.
I am bit confused, How these two alternatives differ as far as performance, speed and hardware is concerned. Because as per my knowledge data forwarding is to be implemented at hardware level, whereas nop can be implemented at assembly level.
Anybody please explain me which approach is better if we consider factors such as performance, speed, hardware etc?
Thanks.
Obviously, having the compiler insert nops into the code stream to fill pipeline slots allows hardware to be simplified which can reduce the duration of a pipeline stage or the depth of the pipeline, reduce design effort (time to market, project risk, design cost), or allow a full processor core to fit on a single chip (which helps performance). However, this benefit is tiny compared to the loss of performance from not using forwarding. Higher latency for dependent instructions is very bad for typical programs.
The MIPS R2000, which had both delayed branches and delayed loads, provided result forwarding. (MIPS is an acronym for "Microprocessor without Interlocked Pipeline Stages"). Delayed loads were soon removed from MIPS (which was possible because such did not affect binary compatibility of correct code). The use of delayed instructions was partially from a belief that most delay slots could be filled by the compiler with useful instructions and partially from believing that the increase in code size was not important relative to the simplification of hardware.
Reducing the latency of a load operation was not practical, so the pipeline would need to be stalled for a cycle anyway. The cost of a nop is in cache and memory capacity effects (i.e., the effect of lower code density), and in some cases a single load delay slot could be filled.
Exposing the pipeline organization also has implications for binary compatibility. Later binary compatible implementations must accommodate the ISA designed for the original pipeline organization. A single delayed branch slot works reasonably well for a simple 5-stage scalar implementation (it can be filled with a useful instruction most of the time and allows zero-effective-delay branches [i.e., no stall to resolve the branch or prediction and flushing the pipeline on misprediction]), but when the pipeline is deepened (or made wider) prediction or stalling becomes necessary anyway.
If sufficient parallelism exists in the targeted workloads, hardware simplicity is sufficiently important, and binary compatibility is not a problem, then exposing a pipeline with minimal support for dynamically detecting and handling stall conditions may be sensible. (There are also ways of encoding nops that avoid most of the code size expansion issues.) Having reliably sufficient parallelism (whether instruction-level or thread-level) allows the avoiding of nops; by compiler scheduling with instruction-level parallelism or by hardware thread interleaving with thread-level parallelism.
Hardware simplicity tends to reduce energy per unit of work (as well as chip area), and many modern designs are limited by power use. It also makes sense to perform optimizations at compile time (when they are less latency critical and can be done once rather than each time the code is executed) if the storage and communication cost of additional information is not too expensive (assuming information necessary to perform the optimization is available at compile time [dynamic branch prediction is a classic example of where dynamic information is helpful]).
Well, basically since hardware is optimised with feed forwarding, there has to be no use of explicitly declared software NOPs. But that's not the case.
Though, feed forwarding proves helpful in reducing data hazards, but some hazards cannot be dealt with feed forwarding. It just isn't possible.
Eg.
beq R1,R5,label
instruction 2nd
Here the instruction 2nd will not be fetched until instruction 1 has completed its execution stage and decided whether or not to branch. Until then the 2nd instruction has to be stalled. (stalled for 2 memory cycles). This is done by software by sending out NOPs.
With improvements in technology and hardware optimizations, the beq instruction can complete its execution stage in its register fetch/decode stage by inserting a comparator in the fetch stage itself. Even so, the 2nd instruction will be stalled for(1 memory cycle now). Again NOP is needed.

Kernel time increases for same number of particles

I am trying to run my code on NVIDIA's K10 GPU. I am using 5.0 CUDA Driver and 4.2 CUDA runtime. The problem is that the time taken by the kernel increases with iterations, where each iteration uses the same number of sources and targets (or particles). Because of this, the kernel eventually takes very large times, and the code crashes with runtime error, which says something like "GPU fallen off the bus".
The plot showing the behavior of increasing kernel run time with number of iterations can be seen here:
https://docs.google.com/open?id=0B5QLL4ig3LVqODdmVjNBTlp5UFU
I tried to run the NVIDIA "nbody" example to understand if the same thing happens here too, and yes it does. For the number of particles/bodies (Np) = 1e5 and 10 iterations, code runs fine. For Np=1e5 and iterations= 100, OR Np=1e6 and iterations = 10, code goes into a mode where it hangs the entire system.
When I run my own kernel as well as NVIDIA's nbody example on a different machine with Tesla C2050 NVIDIA card (CUDA Driver version: 3.2, and runtime version: 3.2), there is no problem, and kernel takes the same amount of time for every iteration.
I am trying to understand whats going on in the machine with the K10 GPU. I have tried different combinations of CUDA driver and runtime versions on this machine, and here is what I get:
For 5.0 CUDA Driver, 4.2 Runtime, it just hangs and sometimes says "GPU fallen off the bus".
For 4.2 CUDA Driver, 4.2 Runtime, the codes (nbody as well as my code) crash with error: "CUDA Runtime API error 39: uncorrectable ECC error encountered."
For 5.0 CUDA Driver, 5.0 Runtime, it just hangs and sometimes says "GPU fallen off the bus".
This is a 64-bit linux machine, which we have recently assembled with NVIDIA K10 GPU card. I am using gfortran44 and gcc44.
Please let me know if any other info. is required to track the problem.
Thanks in advance for the help!
M
I'm mostly just creating an answer so we can call this question closed, but I'll try to add a few details.
Tesla GPUs come in 2 distinct categories: those with a fan, and those without. Those with a fan carry (at this time) the "C" designation, although the K20 product family naming will be slightly different:
These are not exhaustive lists:
Tesla GPUs with a Fan: C870, C1060, C2050, C2070, C2075, K20c ("C Class")
Tesla GPUs without a Fan: M1060, M2050, M2070, M2075, M2090, K10, K20, K20X ("M class")
(note that there is currently no K10 type product with a fan or "C" designation)
Tesla GPUs with a fan are designed to be plugged into a wide variety of PC boxes and chassis, including various workstation and server variants. Since they have their own fan, they require a supply of inlet air that is below a certain temperature level, but given that, they will keep themselves cool. As the workload increases, and the generated heat increases, they will spin up their own fan to keep themselves cool. The main ways you can screw up this process are by either restricting the inlet air flow or by putting it in an ambient air environment that is hotter than its max inlet spec.
Tesla GPUs without a fan have something called a passive heatsink and they cannot keep themselves cool independently and take a passive role in the cooling process. They still have a temperature sensor, but it becomes the responsibility of the server BMC (baseboard management controller) to monitor this temperature sensor (this is done directly at the hardware/firmware level, independent of any OS or any activity being directed at the GPU), and to direct a level of airflow over the card that is sufficient to keep the card cool based on it's indicated temperature. The BMC does this by ramping up whatever fans are designed into the server chassis that control airflow over the GPU. Normally there will be shrouding/ducting within the chassis to aid in this process. Server manufacturers integrating these cards have a variety of responsibilities and must follow various technical specifications from NVIDIA in order to make this work.
If you happen to get your hands on a Tesla GPU without a fan and just slap it in some random chassis, you're pretty much guaranteed to have the behavior as described in this question. For this reason, Tesla "M" series and "K" series GPUs are normally only sold to OEMs who have undergone the qualification process.
Since the average sysadmin/system assembler is not likely to devise a suitable closed loop fan control system and normally does not have easy access to the necessary specifications defining the temperature sensor and access method, the only klugey workaround if you have one of these that you simply must play with, is to direct a high level of continuous airflow over the card, in whatever setting you put it. Be advised, that this will most likely be noisy. If you don't have a noisy level of airflow, you probably do not have enough airflow to keep a card cool that is in a high workload situation. In addition, you should probably keep an eye on GPU temps. Note that the nvidia-smi method for monitoring GPU temps does not work for all M class GPUs (i.e. GPUs without a fan). Unfortunately, the method of temperature sensor access in Fermi and prior for the M class GPUs (different than the C class GPUs) was such that it could not be readily monitored in-system via the nvidia-smi command, so in these cases you will get no temperature reading from nvidia-smi, making this approach even harder to manage. Things changed with the Kepler generation, so now the temperature can be monitored both by the nvidia-smi method and by the server BMC at the hardware/firmware level.
C class products with a fan have a temperature that can be monitored with nvidia-smi, regardless of generation. But this is normally not necessary since the card has it's own control system to keep itself cool.
As mentioned in the comments, all GPUs also have a variety of protection mechanisms, none of which are guaranteed to prevent damage. (If you throw the card in a fire, there's nothing to be done about that.) But the first typical mechanism is thermal throttling. At some predefined high temperature near the maximum safe operating range of the GPU, the GPU firmware will independently reduce its clocks to attempt to prevent further temperature rise. (If the card is clocked slower, then generally it's ability to generate heat is also somewhat reduced.) This is a crude mechanism, and when this thermal throttling occurs, something in the cooling arena is already wrong. The card is designed to not enter thermal throttling ever, under normal operating conditions. If temperatures continue to rise (and there is not much headroom at this point), the card will enter it's final protection mode which is to halt itself. At this point the GPU has become unresponsive to the system, and at the OS level, messages like "gpu has fallen of the bus" are typical. This means cooling has failed and protection mechanisms have failed.